Metamath Proof Explorer


Theorem ecref

Description: All elements are in their own equivalence class. (Contributed by Thierry Arnoux, 14-Feb-2025)

Ref Expression
Assertion ecref
|- ( ( R Er X /\ A e. X ) -> A e. [ A ] R )

Proof

Step Hyp Ref Expression
1 simpl
 |-  ( ( R Er X /\ A e. X ) -> R Er X )
2 simpr
 |-  ( ( R Er X /\ A e. X ) -> A e. X )
3 1 2 erref
 |-  ( ( R Er X /\ A e. X ) -> A R A )
4 elecg
 |-  ( ( A e. X /\ A e. X ) -> ( A e. [ A ] R <-> A R A ) )
5 2 4 sylancom
 |-  ( ( R Er X /\ A e. X ) -> ( A e. [ A ] R <-> A R A ) )
6 3 5 mpbird
 |-  ( ( R Er X /\ A e. X ) -> A e. [ A ] R )