Description: All elements are in their own equivalence class. (Contributed by Thierry Arnoux, 14-Feb-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | ecref | |- ( ( R Er X /\ A e. X ) -> A e. [ A ] R ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl | |- ( ( R Er X /\ A e. X ) -> R Er X ) |
|
2 | simpr | |- ( ( R Er X /\ A e. X ) -> A e. X ) |
|
3 | 1 2 | erref | |- ( ( R Er X /\ A e. X ) -> A R A ) |
4 | elecg | |- ( ( A e. X /\ A e. X ) -> ( A e. [ A ] R <-> A R A ) ) |
|
5 | 2 4 | sylancom | |- ( ( R Er X /\ A e. X ) -> ( A e. [ A ] R <-> A R A ) ) |
6 | 3 5 | mpbird | |- ( ( R Er X /\ A e. X ) -> A e. [ A ] R ) |