Description: All elements are in their own equivalence class. (Contributed by Thierry Arnoux, 14-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ecref | |- ( ( R Er X /\ A e. X ) -> A e. [ A ] R ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | |- ( ( R Er X /\ A e. X ) -> R Er X ) |
|
| 2 | simpr | |- ( ( R Er X /\ A e. X ) -> A e. X ) |
|
| 3 | 1 2 | erref | |- ( ( R Er X /\ A e. X ) -> A R A ) |
| 4 | elecg | |- ( ( A e. X /\ A e. X ) -> ( A e. [ A ] R <-> A R A ) ) |
|
| 5 | 2 4 | sylancom | |- ( ( R Er X /\ A e. X ) -> ( A e. [ A ] R <-> A R A ) ) |
| 6 | 3 5 | mpbird | |- ( ( R Er X /\ A e. X ) -> A e. [ A ] R ) |