Description: All elements are in their own equivalence class. (Contributed by Thierry Arnoux, 14-Feb-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | ecref | ⊢ ( ( 𝑅 Er 𝑋 ∧ 𝐴 ∈ 𝑋 ) → 𝐴 ∈ [ 𝐴 ] 𝑅 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl | ⊢ ( ( 𝑅 Er 𝑋 ∧ 𝐴 ∈ 𝑋 ) → 𝑅 Er 𝑋 ) | |
2 | simpr | ⊢ ( ( 𝑅 Er 𝑋 ∧ 𝐴 ∈ 𝑋 ) → 𝐴 ∈ 𝑋 ) | |
3 | 1 2 | erref | ⊢ ( ( 𝑅 Er 𝑋 ∧ 𝐴 ∈ 𝑋 ) → 𝐴 𝑅 𝐴 ) |
4 | elecg | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 ∈ [ 𝐴 ] 𝑅 ↔ 𝐴 𝑅 𝐴 ) ) | |
5 | 2 4 | sylancom | ⊢ ( ( 𝑅 Er 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 ∈ [ 𝐴 ] 𝑅 ↔ 𝐴 𝑅 𝐴 ) ) |
6 | 3 5 | mpbird | ⊢ ( ( 𝑅 Er 𝑋 ∧ 𝐴 ∈ 𝑋 ) → 𝐴 ∈ [ 𝐴 ] 𝑅 ) |