Metamath Proof Explorer


Theorem ecref

Description: All elements are in their own equivalence class. (Contributed by Thierry Arnoux, 14-Feb-2025)

Ref Expression
Assertion ecref ( ( 𝑅 Er 𝑋𝐴𝑋 ) → 𝐴 ∈ [ 𝐴 ] 𝑅 )

Proof

Step Hyp Ref Expression
1 simpl ( ( 𝑅 Er 𝑋𝐴𝑋 ) → 𝑅 Er 𝑋 )
2 simpr ( ( 𝑅 Er 𝑋𝐴𝑋 ) → 𝐴𝑋 )
3 1 2 erref ( ( 𝑅 Er 𝑋𝐴𝑋 ) → 𝐴 𝑅 𝐴 )
4 elecg ( ( 𝐴𝑋𝐴𝑋 ) → ( 𝐴 ∈ [ 𝐴 ] 𝑅𝐴 𝑅 𝐴 ) )
5 2 4 sylancom ( ( 𝑅 Er 𝑋𝐴𝑋 ) → ( 𝐴 ∈ [ 𝐴 ] 𝑅𝐴 𝑅 𝐴 ) )
6 3 5 mpbird ( ( 𝑅 Er 𝑋𝐴𝑋 ) → 𝐴 ∈ [ 𝐴 ] 𝑅 )