Description: All elements are in their own equivalence class. (Contributed by Thierry Arnoux, 14-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ecref | ⊢ ( ( 𝑅 Er 𝑋 ∧ 𝐴 ∈ 𝑋 ) → 𝐴 ∈ [ 𝐴 ] 𝑅 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | ⊢ ( ( 𝑅 Er 𝑋 ∧ 𝐴 ∈ 𝑋 ) → 𝑅 Er 𝑋 ) | |
| 2 | simpr | ⊢ ( ( 𝑅 Er 𝑋 ∧ 𝐴 ∈ 𝑋 ) → 𝐴 ∈ 𝑋 ) | |
| 3 | 1 2 | erref | ⊢ ( ( 𝑅 Er 𝑋 ∧ 𝐴 ∈ 𝑋 ) → 𝐴 𝑅 𝐴 ) |
| 4 | elecg | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 ∈ [ 𝐴 ] 𝑅 ↔ 𝐴 𝑅 𝐴 ) ) | |
| 5 | 2 4 | sylancom | ⊢ ( ( 𝑅 Er 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 ∈ [ 𝐴 ] 𝑅 ↔ 𝐴 𝑅 𝐴 ) ) |
| 6 | 3 5 | mpbird | ⊢ ( ( 𝑅 Er 𝑋 ∧ 𝐴 ∈ 𝑋 ) → 𝐴 ∈ [ 𝐴 ] 𝑅 ) |