| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rhmqusker.1 |
⊢ 0 = ( 0g ‘ 𝐻 ) |
| 2 |
|
rhmqusker.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐺 RingHom 𝐻 ) ) |
| 3 |
|
rhmqusker.k |
⊢ 𝐾 = ( ◡ 𝐹 “ { 0 } ) |
| 4 |
|
rhmqusker.q |
⊢ 𝑄 = ( 𝐺 /s ( 𝐺 ~QG 𝐾 ) ) |
| 5 |
|
rhmquskerlem.j |
⊢ 𝐽 = ( 𝑞 ∈ ( Base ‘ 𝑄 ) ↦ ∪ ( 𝐹 “ 𝑞 ) ) |
| 6 |
|
rhmquskerlem.2 |
⊢ ( 𝜑 → 𝐺 ∈ CRing ) |
| 7 |
|
eqid |
⊢ ( Base ‘ 𝑄 ) = ( Base ‘ 𝑄 ) |
| 8 |
|
eqid |
⊢ ( 1r ‘ 𝑄 ) = ( 1r ‘ 𝑄 ) |
| 9 |
|
eqid |
⊢ ( 1r ‘ 𝐻 ) = ( 1r ‘ 𝐻 ) |
| 10 |
|
eqid |
⊢ ( .r ‘ 𝑄 ) = ( .r ‘ 𝑄 ) |
| 11 |
|
eqid |
⊢ ( .r ‘ 𝐻 ) = ( .r ‘ 𝐻 ) |
| 12 |
|
rhmrcl1 |
⊢ ( 𝐹 ∈ ( 𝐺 RingHom 𝐻 ) → 𝐺 ∈ Ring ) |
| 13 |
2 12
|
syl |
⊢ ( 𝜑 → 𝐺 ∈ Ring ) |
| 14 |
|
eqid |
⊢ ( LIdeal ‘ 𝐺 ) = ( LIdeal ‘ 𝐺 ) |
| 15 |
14 1
|
kerlidl |
⊢ ( 𝐹 ∈ ( 𝐺 RingHom 𝐻 ) → ( ◡ 𝐹 “ { 0 } ) ∈ ( LIdeal ‘ 𝐺 ) ) |
| 16 |
2 15
|
syl |
⊢ ( 𝜑 → ( ◡ 𝐹 “ { 0 } ) ∈ ( LIdeal ‘ 𝐺 ) ) |
| 17 |
3 16
|
eqeltrid |
⊢ ( 𝜑 → 𝐾 ∈ ( LIdeal ‘ 𝐺 ) ) |
| 18 |
14
|
crng2idl |
⊢ ( 𝐺 ∈ CRing → ( LIdeal ‘ 𝐺 ) = ( 2Ideal ‘ 𝐺 ) ) |
| 19 |
6 18
|
syl |
⊢ ( 𝜑 → ( LIdeal ‘ 𝐺 ) = ( 2Ideal ‘ 𝐺 ) ) |
| 20 |
17 19
|
eleqtrd |
⊢ ( 𝜑 → 𝐾 ∈ ( 2Ideal ‘ 𝐺 ) ) |
| 21 |
|
eqid |
⊢ ( 2Ideal ‘ 𝐺 ) = ( 2Ideal ‘ 𝐺 ) |
| 22 |
|
eqid |
⊢ ( 1r ‘ 𝐺 ) = ( 1r ‘ 𝐺 ) |
| 23 |
4 21 22
|
qus1 |
⊢ ( ( 𝐺 ∈ Ring ∧ 𝐾 ∈ ( 2Ideal ‘ 𝐺 ) ) → ( 𝑄 ∈ Ring ∧ [ ( 1r ‘ 𝐺 ) ] ( 𝐺 ~QG 𝐾 ) = ( 1r ‘ 𝑄 ) ) ) |
| 24 |
13 20 23
|
syl2anc |
⊢ ( 𝜑 → ( 𝑄 ∈ Ring ∧ [ ( 1r ‘ 𝐺 ) ] ( 𝐺 ~QG 𝐾 ) = ( 1r ‘ 𝑄 ) ) ) |
| 25 |
24
|
simpld |
⊢ ( 𝜑 → 𝑄 ∈ Ring ) |
| 26 |
|
rhmrcl2 |
⊢ ( 𝐹 ∈ ( 𝐺 RingHom 𝐻 ) → 𝐻 ∈ Ring ) |
| 27 |
2 26
|
syl |
⊢ ( 𝜑 → 𝐻 ∈ Ring ) |
| 28 |
|
rhmghm |
⊢ ( 𝐹 ∈ ( 𝐺 RingHom 𝐻 ) → 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ) |
| 29 |
2 28
|
syl |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ) |
| 30 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
| 31 |
30 22
|
ringidcl |
⊢ ( 𝐺 ∈ Ring → ( 1r ‘ 𝐺 ) ∈ ( Base ‘ 𝐺 ) ) |
| 32 |
13 31
|
syl |
⊢ ( 𝜑 → ( 1r ‘ 𝐺 ) ∈ ( Base ‘ 𝐺 ) ) |
| 33 |
1 29 3 4 5 32
|
ghmquskerlem1 |
⊢ ( 𝜑 → ( 𝐽 ‘ [ ( 1r ‘ 𝐺 ) ] ( 𝐺 ~QG 𝐾 ) ) = ( 𝐹 ‘ ( 1r ‘ 𝐺 ) ) ) |
| 34 |
24
|
simprd |
⊢ ( 𝜑 → [ ( 1r ‘ 𝐺 ) ] ( 𝐺 ~QG 𝐾 ) = ( 1r ‘ 𝑄 ) ) |
| 35 |
34
|
fveq2d |
⊢ ( 𝜑 → ( 𝐽 ‘ [ ( 1r ‘ 𝐺 ) ] ( 𝐺 ~QG 𝐾 ) ) = ( 𝐽 ‘ ( 1r ‘ 𝑄 ) ) ) |
| 36 |
22 9
|
rhm1 |
⊢ ( 𝐹 ∈ ( 𝐺 RingHom 𝐻 ) → ( 𝐹 ‘ ( 1r ‘ 𝐺 ) ) = ( 1r ‘ 𝐻 ) ) |
| 37 |
2 36
|
syl |
⊢ ( 𝜑 → ( 𝐹 ‘ ( 1r ‘ 𝐺 ) ) = ( 1r ‘ 𝐻 ) ) |
| 38 |
33 35 37
|
3eqtr3d |
⊢ ( 𝜑 → ( 𝐽 ‘ ( 1r ‘ 𝑄 ) ) = ( 1r ‘ 𝐻 ) ) |
| 39 |
2
|
ad6antr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → 𝐹 ∈ ( 𝐺 RingHom 𝐻 ) ) |
| 40 |
4
|
a1i |
⊢ ( 𝜑 → 𝑄 = ( 𝐺 /s ( 𝐺 ~QG 𝐾 ) ) ) |
| 41 |
|
eqidd |
⊢ ( 𝜑 → ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) ) |
| 42 |
|
ovexd |
⊢ ( 𝜑 → ( 𝐺 ~QG 𝐾 ) ∈ V ) |
| 43 |
40 41 42 6
|
qusbas |
⊢ ( 𝜑 → ( ( Base ‘ 𝐺 ) / ( 𝐺 ~QG 𝐾 ) ) = ( Base ‘ 𝑄 ) ) |
| 44 |
1
|
ghmker |
⊢ ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) → ( ◡ 𝐹 “ { 0 } ) ∈ ( NrmSGrp ‘ 𝐺 ) ) |
| 45 |
29 44
|
syl |
⊢ ( 𝜑 → ( ◡ 𝐹 “ { 0 } ) ∈ ( NrmSGrp ‘ 𝐺 ) ) |
| 46 |
3 45
|
eqeltrid |
⊢ ( 𝜑 → 𝐾 ∈ ( NrmSGrp ‘ 𝐺 ) ) |
| 47 |
|
nsgsubg |
⊢ ( 𝐾 ∈ ( NrmSGrp ‘ 𝐺 ) → 𝐾 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 48 |
|
eqid |
⊢ ( 𝐺 ~QG 𝐾 ) = ( 𝐺 ~QG 𝐾 ) |
| 49 |
30 48
|
eqger |
⊢ ( 𝐾 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝐺 ~QG 𝐾 ) Er ( Base ‘ 𝐺 ) ) |
| 50 |
46 47 49
|
3syl |
⊢ ( 𝜑 → ( 𝐺 ~QG 𝐾 ) Er ( Base ‘ 𝐺 ) ) |
| 51 |
50
|
qsss |
⊢ ( 𝜑 → ( ( Base ‘ 𝐺 ) / ( 𝐺 ~QG 𝐾 ) ) ⊆ 𝒫 ( Base ‘ 𝐺 ) ) |
| 52 |
43 51
|
eqsstrrd |
⊢ ( 𝜑 → ( Base ‘ 𝑄 ) ⊆ 𝒫 ( Base ‘ 𝐺 ) ) |
| 53 |
52
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) → 𝑟 ∈ 𝒫 ( Base ‘ 𝐺 ) ) |
| 54 |
53
|
elpwid |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) → 𝑟 ⊆ ( Base ‘ 𝐺 ) ) |
| 55 |
54
|
ad5antr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → 𝑟 ⊆ ( Base ‘ 𝐺 ) ) |
| 56 |
|
simp-4r |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → 𝑥 ∈ 𝑟 ) |
| 57 |
55 56
|
sseldd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → 𝑥 ∈ ( Base ‘ 𝐺 ) ) |
| 58 |
52
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) → 𝑠 ∈ 𝒫 ( Base ‘ 𝐺 ) ) |
| 59 |
58
|
elpwid |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) → 𝑠 ⊆ ( Base ‘ 𝐺 ) ) |
| 60 |
59
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) → 𝑠 ⊆ ( Base ‘ 𝐺 ) ) |
| 61 |
60
|
ad4antr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → 𝑠 ⊆ ( Base ‘ 𝐺 ) ) |
| 62 |
|
simplr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → 𝑦 ∈ 𝑠 ) |
| 63 |
61 62
|
sseldd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → 𝑦 ∈ ( Base ‘ 𝐺 ) ) |
| 64 |
|
eqid |
⊢ ( .r ‘ 𝐺 ) = ( .r ‘ 𝐺 ) |
| 65 |
30 64 11
|
rhmmul |
⊢ ( ( 𝐹 ∈ ( 𝐺 RingHom 𝐻 ) ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) → ( 𝐹 ‘ ( 𝑥 ( .r ‘ 𝐺 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝐻 ) ( 𝐹 ‘ 𝑦 ) ) ) |
| 66 |
39 57 63 65
|
syl3anc |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → ( 𝐹 ‘ ( 𝑥 ( .r ‘ 𝐺 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝐻 ) ( 𝐹 ‘ 𝑦 ) ) ) |
| 67 |
50
|
ad6antr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → ( 𝐺 ~QG 𝐾 ) Er ( Base ‘ 𝐺 ) ) |
| 68 |
|
simp-6r |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → 𝑟 ∈ ( Base ‘ 𝑄 ) ) |
| 69 |
43
|
ad6antr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → ( ( Base ‘ 𝐺 ) / ( 𝐺 ~QG 𝐾 ) ) = ( Base ‘ 𝑄 ) ) |
| 70 |
68 69
|
eleqtrrd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → 𝑟 ∈ ( ( Base ‘ 𝐺 ) / ( 𝐺 ~QG 𝐾 ) ) ) |
| 71 |
|
qsel |
⊢ ( ( ( 𝐺 ~QG 𝐾 ) Er ( Base ‘ 𝐺 ) ∧ 𝑟 ∈ ( ( Base ‘ 𝐺 ) / ( 𝐺 ~QG 𝐾 ) ) ∧ 𝑥 ∈ 𝑟 ) → 𝑟 = [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ) |
| 72 |
67 70 56 71
|
syl3anc |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → 𝑟 = [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ) |
| 73 |
|
simp-5r |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → 𝑠 ∈ ( Base ‘ 𝑄 ) ) |
| 74 |
73 69
|
eleqtrrd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → 𝑠 ∈ ( ( Base ‘ 𝐺 ) / ( 𝐺 ~QG 𝐾 ) ) ) |
| 75 |
|
qsel |
⊢ ( ( ( 𝐺 ~QG 𝐾 ) Er ( Base ‘ 𝐺 ) ∧ 𝑠 ∈ ( ( Base ‘ 𝐺 ) / ( 𝐺 ~QG 𝐾 ) ) ∧ 𝑦 ∈ 𝑠 ) → 𝑠 = [ 𝑦 ] ( 𝐺 ~QG 𝐾 ) ) |
| 76 |
67 74 62 75
|
syl3anc |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → 𝑠 = [ 𝑦 ] ( 𝐺 ~QG 𝐾 ) ) |
| 77 |
72 76
|
oveq12d |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → ( 𝑟 ( .r ‘ 𝑄 ) 𝑠 ) = ( [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ( .r ‘ 𝑄 ) [ 𝑦 ] ( 𝐺 ~QG 𝐾 ) ) ) |
| 78 |
6
|
ad6antr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → 𝐺 ∈ CRing ) |
| 79 |
17
|
ad6antr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → 𝐾 ∈ ( LIdeal ‘ 𝐺 ) ) |
| 80 |
4 30 64 10 78 79 57 63
|
qusmulcrng |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → ( [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ( .r ‘ 𝑄 ) [ 𝑦 ] ( 𝐺 ~QG 𝐾 ) ) = [ ( 𝑥 ( .r ‘ 𝐺 ) 𝑦 ) ] ( 𝐺 ~QG 𝐾 ) ) |
| 81 |
77 80
|
eqtr2d |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → [ ( 𝑥 ( .r ‘ 𝐺 ) 𝑦 ) ] ( 𝐺 ~QG 𝐾 ) = ( 𝑟 ( .r ‘ 𝑄 ) 𝑠 ) ) |
| 82 |
81
|
fveq2d |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → ( 𝐽 ‘ [ ( 𝑥 ( .r ‘ 𝐺 ) 𝑦 ) ] ( 𝐺 ~QG 𝐾 ) ) = ( 𝐽 ‘ ( 𝑟 ( .r ‘ 𝑄 ) 𝑠 ) ) ) |
| 83 |
39 28
|
syl |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ) |
| 84 |
39 12
|
syl |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → 𝐺 ∈ Ring ) |
| 85 |
30 64 84 57 63
|
ringcld |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → ( 𝑥 ( .r ‘ 𝐺 ) 𝑦 ) ∈ ( Base ‘ 𝐺 ) ) |
| 86 |
1 83 3 4 5 85
|
ghmquskerlem1 |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → ( 𝐽 ‘ [ ( 𝑥 ( .r ‘ 𝐺 ) 𝑦 ) ] ( 𝐺 ~QG 𝐾 ) ) = ( 𝐹 ‘ ( 𝑥 ( .r ‘ 𝐺 ) 𝑦 ) ) ) |
| 87 |
82 86
|
eqtr3d |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → ( 𝐽 ‘ ( 𝑟 ( .r ‘ 𝑄 ) 𝑠 ) ) = ( 𝐹 ‘ ( 𝑥 ( .r ‘ 𝐺 ) 𝑦 ) ) ) |
| 88 |
|
simpllr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) |
| 89 |
|
simpr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) |
| 90 |
88 89
|
oveq12d |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → ( ( 𝐽 ‘ 𝑟 ) ( .r ‘ 𝐻 ) ( 𝐽 ‘ 𝑠 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝐻 ) ( 𝐹 ‘ 𝑦 ) ) ) |
| 91 |
66 87 90
|
3eqtr4d |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → ( 𝐽 ‘ ( 𝑟 ( .r ‘ 𝑄 ) 𝑠 ) ) = ( ( 𝐽 ‘ 𝑟 ) ( .r ‘ 𝐻 ) ( 𝐽 ‘ 𝑠 ) ) ) |
| 92 |
29
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) → 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ) |
| 93 |
|
simpllr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) → 𝑠 ∈ ( Base ‘ 𝑄 ) ) |
| 94 |
1 92 3 4 5 93
|
ghmquskerlem2 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) → ∃ 𝑦 ∈ 𝑠 ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) |
| 95 |
91 94
|
r19.29a |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) → ( 𝐽 ‘ ( 𝑟 ( .r ‘ 𝑄 ) 𝑠 ) ) = ( ( 𝐽 ‘ 𝑟 ) ( .r ‘ 𝐻 ) ( 𝐽 ‘ 𝑠 ) ) ) |
| 96 |
29
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) → 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ) |
| 97 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) → 𝑟 ∈ ( Base ‘ 𝑄 ) ) |
| 98 |
1 96 3 4 5 97
|
ghmquskerlem2 |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) → ∃ 𝑥 ∈ 𝑟 ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) |
| 99 |
95 98
|
r19.29a |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) → ( 𝐽 ‘ ( 𝑟 ( .r ‘ 𝑄 ) 𝑠 ) ) = ( ( 𝐽 ‘ 𝑟 ) ( .r ‘ 𝐻 ) ( 𝐽 ‘ 𝑠 ) ) ) |
| 100 |
99
|
anasss |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ ( Base ‘ 𝑄 ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ) → ( 𝐽 ‘ ( 𝑟 ( .r ‘ 𝑄 ) 𝑠 ) ) = ( ( 𝐽 ‘ 𝑟 ) ( .r ‘ 𝐻 ) ( 𝐽 ‘ 𝑠 ) ) ) |
| 101 |
1 29 3 4 5
|
ghmquskerlem3 |
⊢ ( 𝜑 → 𝐽 ∈ ( 𝑄 GrpHom 𝐻 ) ) |
| 102 |
7 8 9 10 11 25 27 38 100 101
|
isrhm2d |
⊢ ( 𝜑 → 𝐽 ∈ ( 𝑄 RingHom 𝐻 ) ) |