| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rhmqusker.1 |
⊢ 0 = ( 0g ‘ 𝐻 ) |
| 2 |
|
rhmqusker.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐺 RingHom 𝐻 ) ) |
| 3 |
|
rhmqusker.k |
⊢ 𝐾 = ( ◡ 𝐹 “ { 0 } ) |
| 4 |
|
rhmqusker.q |
⊢ 𝑄 = ( 𝐺 /s ( 𝐺 ~QG 𝐾 ) ) |
| 5 |
|
rhmqusker.s |
⊢ ( 𝜑 → ran 𝐹 = ( Base ‘ 𝐻 ) ) |
| 6 |
|
rhmqusker.2 |
⊢ ( 𝜑 → 𝐺 ∈ CRing ) |
| 7 |
|
rhmqusker.j |
⊢ 𝐽 = ( 𝑞 ∈ ( Base ‘ 𝑄 ) ↦ ∪ ( 𝐹 “ 𝑞 ) ) |
| 8 |
1 2 3 4 7 6
|
rhmquskerlem |
⊢ ( 𝜑 → 𝐽 ∈ ( 𝑄 RingHom 𝐻 ) ) |
| 9 |
|
rhmghm |
⊢ ( 𝐹 ∈ ( 𝐺 RingHom 𝐻 ) → 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ) |
| 10 |
2 9
|
syl |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ) |
| 11 |
1 10 3 4 7 5
|
ghmqusker |
⊢ ( 𝜑 → 𝐽 ∈ ( 𝑄 GrpIso 𝐻 ) ) |
| 12 |
|
eqid |
⊢ ( Base ‘ 𝑄 ) = ( Base ‘ 𝑄 ) |
| 13 |
|
eqid |
⊢ ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 ) |
| 14 |
12 13
|
gimf1o |
⊢ ( 𝐽 ∈ ( 𝑄 GrpIso 𝐻 ) → 𝐽 : ( Base ‘ 𝑄 ) –1-1-onto→ ( Base ‘ 𝐻 ) ) |
| 15 |
11 14
|
syl |
⊢ ( 𝜑 → 𝐽 : ( Base ‘ 𝑄 ) –1-1-onto→ ( Base ‘ 𝐻 ) ) |
| 16 |
12 13
|
isrim |
⊢ ( 𝐽 ∈ ( 𝑄 RingIso 𝐻 ) ↔ ( 𝐽 ∈ ( 𝑄 RingHom 𝐻 ) ∧ 𝐽 : ( Base ‘ 𝑄 ) –1-1-onto→ ( Base ‘ 𝐻 ) ) ) |
| 17 |
8 15 16
|
sylanbrc |
⊢ ( 𝜑 → 𝐽 ∈ ( 𝑄 RingIso 𝐻 ) ) |