| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rhmqusker.1 |
|- .0. = ( 0g ` H ) |
| 2 |
|
rhmqusker.f |
|- ( ph -> F e. ( G RingHom H ) ) |
| 3 |
|
rhmqusker.k |
|- K = ( `' F " { .0. } ) |
| 4 |
|
rhmqusker.q |
|- Q = ( G /s ( G ~QG K ) ) |
| 5 |
|
rhmqusker.s |
|- ( ph -> ran F = ( Base ` H ) ) |
| 6 |
|
rhmqusker.2 |
|- ( ph -> G e. CRing ) |
| 7 |
|
rhmqusker.j |
|- J = ( q e. ( Base ` Q ) |-> U. ( F " q ) ) |
| 8 |
1 2 3 4 7 6
|
rhmquskerlem |
|- ( ph -> J e. ( Q RingHom H ) ) |
| 9 |
|
rhmghm |
|- ( F e. ( G RingHom H ) -> F e. ( G GrpHom H ) ) |
| 10 |
2 9
|
syl |
|- ( ph -> F e. ( G GrpHom H ) ) |
| 11 |
1 10 3 4 7 5
|
ghmqusker |
|- ( ph -> J e. ( Q GrpIso H ) ) |
| 12 |
|
eqid |
|- ( Base ` Q ) = ( Base ` Q ) |
| 13 |
|
eqid |
|- ( Base ` H ) = ( Base ` H ) |
| 14 |
12 13
|
gimf1o |
|- ( J e. ( Q GrpIso H ) -> J : ( Base ` Q ) -1-1-onto-> ( Base ` H ) ) |
| 15 |
11 14
|
syl |
|- ( ph -> J : ( Base ` Q ) -1-1-onto-> ( Base ` H ) ) |
| 16 |
12 13
|
isrim |
|- ( J e. ( Q RingIso H ) <-> ( J e. ( Q RingHom H ) /\ J : ( Base ` Q ) -1-1-onto-> ( Base ` H ) ) ) |
| 17 |
8 15 16
|
sylanbrc |
|- ( ph -> J e. ( Q RingIso H ) ) |