| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rhmqusker.1 |
|- .0. = ( 0g ` H ) |
| 2 |
|
rhmqusker.f |
|- ( ph -> F e. ( G RingHom H ) ) |
| 3 |
|
rhmqusker.k |
|- K = ( `' F " { .0. } ) |
| 4 |
|
rhmqusker.q |
|- Q = ( G /s ( G ~QG K ) ) |
| 5 |
|
rhmqusker.s |
|- ( ph -> ran F = ( Base ` H ) ) |
| 6 |
|
rhmqusker.2 |
|- ( ph -> G e. CRing ) |
| 7 |
|
imaeq2 |
|- ( p = q -> ( F " p ) = ( F " q ) ) |
| 8 |
7
|
unieqd |
|- ( p = q -> U. ( F " p ) = U. ( F " q ) ) |
| 9 |
8
|
cbvmptv |
|- ( p e. ( Base ` Q ) |-> U. ( F " p ) ) = ( q e. ( Base ` Q ) |-> U. ( F " q ) ) |
| 10 |
1 2 3 4 5 6 9
|
rhmqusker |
|- ( ph -> ( p e. ( Base ` Q ) |-> U. ( F " p ) ) e. ( Q RingIso H ) ) |
| 11 |
|
brrici |
|- ( ( p e. ( Base ` Q ) |-> U. ( F " p ) ) e. ( Q RingIso H ) -> Q ~=r H ) |
| 12 |
10 11
|
syl |
|- ( ph -> Q ~=r H ) |