Metamath Proof Explorer


Theorem mxidlirred

Description: In a principal ideal domain, maximal ideals are exactly the ideals generated by irreducible elements. (Contributed by Thierry Arnoux, 22-Mar-2025)

Ref Expression
Hypotheses mxidlirred.b B = Base R
mxidlirred.k K = RSpan R
mxidlirred.0 0 ˙ = 0 R
mxidlirred.m M = K X
mxidlirred.r φ R PID
mxidlirred.x φ X B
mxidlirred.y φ X 0 ˙
mxidlirred.1 φ M LIdeal R
Assertion mxidlirred φ M MaxIdeal R X Irred R

Proof

Step Hyp Ref Expression
1 mxidlirred.b B = Base R
2 mxidlirred.k K = RSpan R
3 mxidlirred.0 0 ˙ = 0 R
4 mxidlirred.m M = K X
5 mxidlirred.r φ R PID
6 mxidlirred.x φ X B
7 mxidlirred.y φ X 0 ˙
8 mxidlirred.1 φ M LIdeal R
9 df-pid PID = IDomn LPIR
10 5 9 eleqtrdi φ R IDomn LPIR
11 10 elin1d φ R IDomn
12 11 adantr φ M MaxIdeal R R IDomn
13 6 adantr φ M MaxIdeal R X B
14 7 adantr φ M MaxIdeal R X 0 ˙
15 simpr φ M MaxIdeal R M MaxIdeal R
16 1 2 3 4 12 13 14 15 mxidlirredi φ M MaxIdeal R X Irred R
17 eqid r R = r R
18 simplr φ X Irred R ¬ M MaxIdeal R k LIdeal R ¬ M k k = M k = B x B k = K x x B
19 18 ad2antrr φ X Irred R ¬ M MaxIdeal R k LIdeal R ¬ M k k = M k = B x B k = K x t B X = t R x x B
20 6 ad8antr φ X Irred R ¬ M MaxIdeal R k LIdeal R ¬ M k k = M k = B x B k = K x t B X = t R x X B
21 eqid Unit R = Unit R
22 eqid R = R
23 11 idomringd φ R Ring
24 23 ad4antr φ X Irred R ¬ M MaxIdeal R k LIdeal R ¬ M k k = M k = B R Ring
25 24 ad2antrr φ X Irred R ¬ M MaxIdeal R k LIdeal R ¬ M k k = M k = B x B k = K x R Ring
26 25 ad2antrr φ X Irred R ¬ M MaxIdeal R k LIdeal R ¬ M k k = M k = B x B k = K x t B X = t R x R Ring
27 simplr φ X Irred R ¬ M MaxIdeal R k LIdeal R ¬ M k k = M k = B x B k = K x t B X = t R x t B
28 simpr φ X Irred R ¬ M MaxIdeal R k LIdeal R ¬ M k k = M k = B x B k = K x t B X = t R x X = t R x
29 simp-8r φ X Irred R ¬ M MaxIdeal R k LIdeal R ¬ M k k = M k = B x B k = K x t B X = t R x X Irred R
30 28 29 eqeltrrd φ X Irred R ¬ M MaxIdeal R k LIdeal R ¬ M k k = M k = B x B k = K x t B X = t R x t R x Irred R
31 eqid Irred R = Irred R
32 31 1 21 22 irredmul t B x B t R x Irred R t Unit R x Unit R
33 27 19 30 32 syl3anc φ X Irred R ¬ M MaxIdeal R k LIdeal R ¬ M k k = M k = B x B k = K x t B X = t R x t Unit R x Unit R
34 simpr φ X Irred R ¬ M MaxIdeal R k LIdeal R ¬ M k k = M k = B x B k = K x k = K x
35 34 ad2antrr φ X Irred R ¬ M MaxIdeal R k LIdeal R ¬ M k k = M k = B x B k = K x t B X = t R x k = K x
36 simpr φ X Irred R ¬ M MaxIdeal R k LIdeal R ¬ M k k = M k = B ¬ M k k = M k = B
37 annim M k ¬ k = M k = B ¬ M k k = M k = B
38 36 37 sylibr φ X Irred R ¬ M MaxIdeal R k LIdeal R ¬ M k k = M k = B M k ¬ k = M k = B
39 38 simprd φ X Irred R ¬ M MaxIdeal R k LIdeal R ¬ M k k = M k = B ¬ k = M k = B
40 ioran ¬ k = M k = B ¬ k = M ¬ k = B
41 39 40 sylib φ X Irred R ¬ M MaxIdeal R k LIdeal R ¬ M k k = M k = B ¬ k = M ¬ k = B
42 41 simprd φ X Irred R ¬ M MaxIdeal R k LIdeal R ¬ M k k = M k = B ¬ k = B
43 42 neqned φ X Irred R ¬ M MaxIdeal R k LIdeal R ¬ M k k = M k = B k B
44 43 ad4antr φ X Irred R ¬ M MaxIdeal R k LIdeal R ¬ M k k = M k = B x B k = K x t B X = t R x k B
45 35 44 eqnetrrd φ X Irred R ¬ M MaxIdeal R k LIdeal R ¬ M k k = M k = B x B k = K x t B X = t R x K x B
46 45 neneqd φ X Irred R ¬ M MaxIdeal R k LIdeal R ¬ M k k = M k = B x B k = K x t B X = t R x ¬ K x = B
47 eqid K x = K x
48 11 ad8antr φ X Irred R ¬ M MaxIdeal R k LIdeal R ¬ M k k = M k = B x B k = K x t B X = t R x R IDomn
49 21 2 47 1 19 48 unitpidl1 φ X Irred R ¬ M MaxIdeal R k LIdeal R ¬ M k k = M k = B x B k = K x t B X = t R x K x = B x Unit R
50 46 49 mtbid φ X Irred R ¬ M MaxIdeal R k LIdeal R ¬ M k k = M k = B x B k = K x t B X = t R x ¬ x Unit R
51 33 50 olcnd φ X Irred R ¬ M MaxIdeal R k LIdeal R ¬ M k k = M k = B x B k = K x t B X = t R x t Unit R
52 28 eqcomd φ X Irred R ¬ M MaxIdeal R k LIdeal R ¬ M k k = M k = B x B k = K x t B X = t R x t R x = X
53 1 2 17 19 20 21 22 26 51 52 dvdsruassoi φ X Irred R ¬ M MaxIdeal R k LIdeal R ¬ M k k = M k = B x B k = K x t B X = t R x x r R X X r R x
54 1 2 17 19 20 26 rspsnasso φ X Irred R ¬ M MaxIdeal R k LIdeal R ¬ M k k = M k = B x B k = K x t B X = t R x x r R X X r R x K X = K x
55 53 54 mpbid φ X Irred R ¬ M MaxIdeal R k LIdeal R ¬ M k k = M k = B x B k = K x t B X = t R x K X = K x
56 55 35 eqtr4d φ X Irred R ¬ M MaxIdeal R k LIdeal R ¬ M k k = M k = B x B k = K x t B X = t R x K X = k
57 4 56 eqtr2id φ X Irred R ¬ M MaxIdeal R k LIdeal R ¬ M k k = M k = B x B k = K x t B X = t R x k = M
58 41 simpld φ X Irred R ¬ M MaxIdeal R k LIdeal R ¬ M k k = M k = B ¬ k = M
59 58 ad4antr φ X Irred R ¬ M MaxIdeal R k LIdeal R ¬ M k k = M k = B x B k = K x t B X = t R x ¬ k = M
60 57 59 pm2.21dd φ X Irred R ¬ M MaxIdeal R k LIdeal R ¬ M k k = M k = B x B k = K x t B X = t R x M MaxIdeal R
61 38 simpld φ X Irred R ¬ M MaxIdeal R k LIdeal R ¬ M k k = M k = B M k
62 61 ad2antrr φ X Irred R ¬ M MaxIdeal R k LIdeal R ¬ M k k = M k = B x B k = K x M k
63 6 snssd φ X B
64 2 1 rspssid R Ring X B X K X
65 23 63 64 syl2anc φ X K X
66 65 4 sseqtrrdi φ X M
67 snssg X B X M X M
68 67 biimpar X B X M X M
69 6 66 68 syl2anc φ X M
70 69 ad6antr φ X Irred R ¬ M MaxIdeal R k LIdeal R ¬ M k k = M k = B x B k = K x X M
71 62 70 sseldd φ X Irred R ¬ M MaxIdeal R k LIdeal R ¬ M k k = M k = B x B k = K x X k
72 71 34 eleqtrd φ X Irred R ¬ M MaxIdeal R k LIdeal R ¬ M k k = M k = B x B k = K x X K x
73 1 22 2 elrspsn R Ring x B X K x t B X = t R x
74 73 biimpa R Ring x B X K x t B X = t R x
75 25 18 72 74 syl21anc φ X Irred R ¬ M MaxIdeal R k LIdeal R ¬ M k k = M k = B x B k = K x t B X = t R x
76 60 75 r19.29a φ X Irred R ¬ M MaxIdeal R k LIdeal R ¬ M k k = M k = B x B k = K x M MaxIdeal R
77 simplr φ X Irred R ¬ M MaxIdeal R k LIdeal R ¬ M k k = M k = B k LIdeal R
78 10 elin2d φ R LPIR
79 eqid LPIdeal R = LPIdeal R
80 eqid LIdeal R = LIdeal R
81 79 80 islpir R LPIR R Ring LIdeal R = LPIdeal R
82 81 simprbi R LPIR LIdeal R = LPIdeal R
83 78 82 syl φ LIdeal R = LPIdeal R
84 83 ad4antr φ X Irred R ¬ M MaxIdeal R k LIdeal R ¬ M k k = M k = B LIdeal R = LPIdeal R
85 77 84 eleqtrd φ X Irred R ¬ M MaxIdeal R k LIdeal R ¬ M k k = M k = B k LPIdeal R
86 79 2 1 islpidl R Ring k LPIdeal R x B k = K x
87 86 biimpa R Ring k LPIdeal R x B k = K x
88 24 85 87 syl2anc φ X Irred R ¬ M MaxIdeal R k LIdeal R ¬ M k k = M k = B x B k = K x
89 76 88 r19.29a φ X Irred R ¬ M MaxIdeal R k LIdeal R ¬ M k k = M k = B M MaxIdeal R
90 8 ad2antrr φ X Irred R ¬ M MaxIdeal R M LIdeal R
91 31 21 irrednu X Irred R ¬ X Unit R
92 91 adantl φ X Irred R ¬ X Unit R
93 21 2 4 1 6 11 unitpidl1 φ M = B X Unit R
94 93 adantr φ X Irred R M = B X Unit R
95 94 necon3abid φ X Irred R M B ¬ X Unit R
96 92 95 mpbird φ X Irred R M B
97 96 adantr φ X Irred R ¬ M MaxIdeal R M B
98 90 97 jca φ X Irred R ¬ M MaxIdeal R M LIdeal R M B
99 1 ismxidl R Ring M MaxIdeal R M LIdeal R M B k LIdeal R M k k = M k = B
100 23 99 syl φ M MaxIdeal R M LIdeal R M B k LIdeal R M k k = M k = B
101 df-3an M LIdeal R M B k LIdeal R M k k = M k = B M LIdeal R M B k LIdeal R M k k = M k = B
102 100 101 bitrdi φ M MaxIdeal R M LIdeal R M B k LIdeal R M k k = M k = B
103 102 notbid φ ¬ M MaxIdeal R ¬ M LIdeal R M B k LIdeal R M k k = M k = B
104 103 biimpa φ ¬ M MaxIdeal R ¬ M LIdeal R M B k LIdeal R M k k = M k = B
105 104 adantlr φ X Irred R ¬ M MaxIdeal R ¬ M LIdeal R M B k LIdeal R M k k = M k = B
106 98 105 mpnanrd φ X Irred R ¬ M MaxIdeal R ¬ k LIdeal R M k k = M k = B
107 rexnal k LIdeal R ¬ M k k = M k = B ¬ k LIdeal R M k k = M k = B
108 106 107 sylibr φ X Irred R ¬ M MaxIdeal R k LIdeal R ¬ M k k = M k = B
109 89 108 r19.29a φ X Irred R ¬ M MaxIdeal R M MaxIdeal R
110 109 pm2.18da φ X Irred R M MaxIdeal R
111 16 110 impbida φ M MaxIdeal R X Irred R