| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mxidlirred.b |
|
| 2 |
|
mxidlirred.k |
|
| 3 |
|
mxidlirred.0 |
|
| 4 |
|
mxidlirred.m |
|
| 5 |
|
mxidlirred.r |
|
| 6 |
|
mxidlirred.x |
|
| 7 |
|
mxidlirred.y |
|
| 8 |
|
mxidlirred.1 |
|
| 9 |
|
df-pid |
|
| 10 |
5 9
|
eleqtrdi |
|
| 11 |
10
|
elin1d |
|
| 12 |
11
|
adantr |
|
| 13 |
6
|
adantr |
|
| 14 |
7
|
adantr |
|
| 15 |
|
simpr |
|
| 16 |
1 2 3 4 12 13 14 15
|
mxidlirredi |
|
| 17 |
|
eqid |
|
| 18 |
|
simplr |
|
| 19 |
18
|
ad2antrr |
|
| 20 |
6
|
ad8antr |
|
| 21 |
|
eqid |
|
| 22 |
|
eqid |
|
| 23 |
11
|
idomringd |
|
| 24 |
23
|
ad4antr |
|
| 25 |
24
|
ad2antrr |
|
| 26 |
25
|
ad2antrr |
|
| 27 |
|
simplr |
|
| 28 |
|
simpr |
|
| 29 |
|
simp-8r |
|
| 30 |
28 29
|
eqeltrrd |
|
| 31 |
|
eqid |
|
| 32 |
31 1 21 22
|
irredmul |
|
| 33 |
27 19 30 32
|
syl3anc |
|
| 34 |
|
simpr |
|
| 35 |
34
|
ad2antrr |
|
| 36 |
|
simpr |
|
| 37 |
|
annim |
|
| 38 |
36 37
|
sylibr |
|
| 39 |
38
|
simprd |
|
| 40 |
|
ioran |
|
| 41 |
39 40
|
sylib |
|
| 42 |
41
|
simprd |
|
| 43 |
42
|
neqned |
|
| 44 |
43
|
ad4antr |
|
| 45 |
35 44
|
eqnetrrd |
|
| 46 |
45
|
neneqd |
|
| 47 |
|
eqid |
|
| 48 |
11
|
ad8antr |
|
| 49 |
21 2 47 1 19 48
|
unitpidl1 |
|
| 50 |
46 49
|
mtbid |
|
| 51 |
33 50
|
olcnd |
|
| 52 |
28
|
eqcomd |
|
| 53 |
1 2 17 19 20 21 22 26 51 52
|
dvdsruassoi |
|
| 54 |
1 2 17 19 20 26
|
rspsnasso |
|
| 55 |
53 54
|
mpbid |
|
| 56 |
55 35
|
eqtr4d |
|
| 57 |
4 56
|
eqtr2id |
|
| 58 |
41
|
simpld |
|
| 59 |
58
|
ad4antr |
|
| 60 |
57 59
|
pm2.21dd |
|
| 61 |
38
|
simpld |
|
| 62 |
61
|
ad2antrr |
|
| 63 |
6
|
snssd |
|
| 64 |
2 1
|
rspssid |
|
| 65 |
23 63 64
|
syl2anc |
|
| 66 |
65 4
|
sseqtrrdi |
|
| 67 |
|
snssg |
|
| 68 |
67
|
biimpar |
|
| 69 |
6 66 68
|
syl2anc |
|
| 70 |
69
|
ad6antr |
|
| 71 |
62 70
|
sseldd |
|
| 72 |
71 34
|
eleqtrd |
|
| 73 |
1 22 2
|
elrspsn |
|
| 74 |
73
|
biimpa |
|
| 75 |
25 18 72 74
|
syl21anc |
|
| 76 |
60 75
|
r19.29a |
|
| 77 |
|
simplr |
|
| 78 |
10
|
elin2d |
|
| 79 |
|
eqid |
|
| 80 |
|
eqid |
|
| 81 |
79 80
|
islpir |
|
| 82 |
81
|
simprbi |
|
| 83 |
78 82
|
syl |
|
| 84 |
83
|
ad4antr |
|
| 85 |
77 84
|
eleqtrd |
|
| 86 |
79 2 1
|
islpidl |
|
| 87 |
86
|
biimpa |
|
| 88 |
24 85 87
|
syl2anc |
|
| 89 |
76 88
|
r19.29a |
|
| 90 |
8
|
ad2antrr |
|
| 91 |
31 21
|
irrednu |
|
| 92 |
91
|
adantl |
|
| 93 |
21 2 4 1 6 11
|
unitpidl1 |
|
| 94 |
93
|
adantr |
|
| 95 |
94
|
necon3abid |
|
| 96 |
92 95
|
mpbird |
|
| 97 |
96
|
adantr |
|
| 98 |
90 97
|
jca |
|
| 99 |
1
|
ismxidl |
|
| 100 |
23 99
|
syl |
|
| 101 |
|
df-3an |
|
| 102 |
100 101
|
bitrdi |
|
| 103 |
102
|
notbid |
|
| 104 |
103
|
biimpa |
|
| 105 |
104
|
adantlr |
|
| 106 |
98 105
|
mpnanrd |
|
| 107 |
|
rexnal |
|
| 108 |
106 107
|
sylibr |
|
| 109 |
89 108
|
r19.29a |
|
| 110 |
109
|
pm2.18da |
|
| 111 |
16 110
|
impbida |
|