Metamath Proof Explorer


Theorem islpidl

Description: Property of being a principal ideal. (Contributed by Stefan O'Rear, 3-Jan-2015)

Ref Expression
Hypotheses lpival.p P=LPIdealR
lpival.k K=RSpanR
lpival.b B=BaseR
Assertion islpidl RRingIPgBI=Kg

Proof

Step Hyp Ref Expression
1 lpival.p P=LPIdealR
2 lpival.k K=RSpanR
3 lpival.b B=BaseR
4 1 2 3 lpival RRingP=gBKg
5 4 eleq2d RRingIPIgBKg
6 eliun IgBKggBIKg
7 fvex KgV
8 7 elsn2 IKgI=Kg
9 8 rexbii gBIKggBI=Kg
10 6 9 bitri IgBKggBI=Kg
11 5 10 bitrdi RRingIPgBI=Kg