Step |
Hyp |
Ref |
Expression |
1 |
|
mxidlirred.b |
|- B = ( Base ` R ) |
2 |
|
mxidlirred.k |
|- K = ( RSpan ` R ) |
3 |
|
mxidlirred.0 |
|- .0. = ( 0g ` R ) |
4 |
|
mxidlirred.m |
|- M = ( K ` { X } ) |
5 |
|
mxidlirred.r |
|- ( ph -> R e. PID ) |
6 |
|
mxidlirred.x |
|- ( ph -> X e. B ) |
7 |
|
mxidlirred.y |
|- ( ph -> X =/= .0. ) |
8 |
|
mxidlirred.1 |
|- ( ph -> M e. ( LIdeal ` R ) ) |
9 |
|
df-pid |
|- PID = ( IDomn i^i LPIR ) |
10 |
5 9
|
eleqtrdi |
|- ( ph -> R e. ( IDomn i^i LPIR ) ) |
11 |
10
|
elin1d |
|- ( ph -> R e. IDomn ) |
12 |
11
|
adantr |
|- ( ( ph /\ M e. ( MaxIdeal ` R ) ) -> R e. IDomn ) |
13 |
6
|
adantr |
|- ( ( ph /\ M e. ( MaxIdeal ` R ) ) -> X e. B ) |
14 |
7
|
adantr |
|- ( ( ph /\ M e. ( MaxIdeal ` R ) ) -> X =/= .0. ) |
15 |
|
simpr |
|- ( ( ph /\ M e. ( MaxIdeal ` R ) ) -> M e. ( MaxIdeal ` R ) ) |
16 |
1 2 3 4 12 13 14 15
|
mxidlirredi |
|- ( ( ph /\ M e. ( MaxIdeal ` R ) ) -> X e. ( Irred ` R ) ) |
17 |
|
eqid |
|- ( ||r ` R ) = ( ||r ` R ) |
18 |
|
simplr |
|- ( ( ( ( ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ -. ( M C_ k -> ( k = M \/ k = B ) ) ) /\ x e. B ) /\ k = ( K ` { x } ) ) -> x e. B ) |
19 |
18
|
ad2antrr |
|- ( ( ( ( ( ( ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ -. ( M C_ k -> ( k = M \/ k = B ) ) ) /\ x e. B ) /\ k = ( K ` { x } ) ) /\ t e. B ) /\ X = ( t ( .r ` R ) x ) ) -> x e. B ) |
20 |
6
|
ad8antr |
|- ( ( ( ( ( ( ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ -. ( M C_ k -> ( k = M \/ k = B ) ) ) /\ x e. B ) /\ k = ( K ` { x } ) ) /\ t e. B ) /\ X = ( t ( .r ` R ) x ) ) -> X e. B ) |
21 |
|
eqid |
|- ( Unit ` R ) = ( Unit ` R ) |
22 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
23 |
11
|
idomringd |
|- ( ph -> R e. Ring ) |
24 |
23
|
ad4antr |
|- ( ( ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ -. ( M C_ k -> ( k = M \/ k = B ) ) ) -> R e. Ring ) |
25 |
24
|
ad2antrr |
|- ( ( ( ( ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ -. ( M C_ k -> ( k = M \/ k = B ) ) ) /\ x e. B ) /\ k = ( K ` { x } ) ) -> R e. Ring ) |
26 |
25
|
ad2antrr |
|- ( ( ( ( ( ( ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ -. ( M C_ k -> ( k = M \/ k = B ) ) ) /\ x e. B ) /\ k = ( K ` { x } ) ) /\ t e. B ) /\ X = ( t ( .r ` R ) x ) ) -> R e. Ring ) |
27 |
|
simplr |
|- ( ( ( ( ( ( ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ -. ( M C_ k -> ( k = M \/ k = B ) ) ) /\ x e. B ) /\ k = ( K ` { x } ) ) /\ t e. B ) /\ X = ( t ( .r ` R ) x ) ) -> t e. B ) |
28 |
|
simpr |
|- ( ( ( ( ( ( ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ -. ( M C_ k -> ( k = M \/ k = B ) ) ) /\ x e. B ) /\ k = ( K ` { x } ) ) /\ t e. B ) /\ X = ( t ( .r ` R ) x ) ) -> X = ( t ( .r ` R ) x ) ) |
29 |
|
simp-8r |
|- ( ( ( ( ( ( ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ -. ( M C_ k -> ( k = M \/ k = B ) ) ) /\ x e. B ) /\ k = ( K ` { x } ) ) /\ t e. B ) /\ X = ( t ( .r ` R ) x ) ) -> X e. ( Irred ` R ) ) |
30 |
28 29
|
eqeltrrd |
|- ( ( ( ( ( ( ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ -. ( M C_ k -> ( k = M \/ k = B ) ) ) /\ x e. B ) /\ k = ( K ` { x } ) ) /\ t e. B ) /\ X = ( t ( .r ` R ) x ) ) -> ( t ( .r ` R ) x ) e. ( Irred ` R ) ) |
31 |
|
eqid |
|- ( Irred ` R ) = ( Irred ` R ) |
32 |
31 1 21 22
|
irredmul |
|- ( ( t e. B /\ x e. B /\ ( t ( .r ` R ) x ) e. ( Irred ` R ) ) -> ( t e. ( Unit ` R ) \/ x e. ( Unit ` R ) ) ) |
33 |
27 19 30 32
|
syl3anc |
|- ( ( ( ( ( ( ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ -. ( M C_ k -> ( k = M \/ k = B ) ) ) /\ x e. B ) /\ k = ( K ` { x } ) ) /\ t e. B ) /\ X = ( t ( .r ` R ) x ) ) -> ( t e. ( Unit ` R ) \/ x e. ( Unit ` R ) ) ) |
34 |
|
simpr |
|- ( ( ( ( ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ -. ( M C_ k -> ( k = M \/ k = B ) ) ) /\ x e. B ) /\ k = ( K ` { x } ) ) -> k = ( K ` { x } ) ) |
35 |
34
|
ad2antrr |
|- ( ( ( ( ( ( ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ -. ( M C_ k -> ( k = M \/ k = B ) ) ) /\ x e. B ) /\ k = ( K ` { x } ) ) /\ t e. B ) /\ X = ( t ( .r ` R ) x ) ) -> k = ( K ` { x } ) ) |
36 |
|
simpr |
|- ( ( ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ -. ( M C_ k -> ( k = M \/ k = B ) ) ) -> -. ( M C_ k -> ( k = M \/ k = B ) ) ) |
37 |
|
annim |
|- ( ( M C_ k /\ -. ( k = M \/ k = B ) ) <-> -. ( M C_ k -> ( k = M \/ k = B ) ) ) |
38 |
36 37
|
sylibr |
|- ( ( ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ -. ( M C_ k -> ( k = M \/ k = B ) ) ) -> ( M C_ k /\ -. ( k = M \/ k = B ) ) ) |
39 |
38
|
simprd |
|- ( ( ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ -. ( M C_ k -> ( k = M \/ k = B ) ) ) -> -. ( k = M \/ k = B ) ) |
40 |
|
ioran |
|- ( -. ( k = M \/ k = B ) <-> ( -. k = M /\ -. k = B ) ) |
41 |
39 40
|
sylib |
|- ( ( ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ -. ( M C_ k -> ( k = M \/ k = B ) ) ) -> ( -. k = M /\ -. k = B ) ) |
42 |
41
|
simprd |
|- ( ( ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ -. ( M C_ k -> ( k = M \/ k = B ) ) ) -> -. k = B ) |
43 |
42
|
neqned |
|- ( ( ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ -. ( M C_ k -> ( k = M \/ k = B ) ) ) -> k =/= B ) |
44 |
43
|
ad4antr |
|- ( ( ( ( ( ( ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ -. ( M C_ k -> ( k = M \/ k = B ) ) ) /\ x e. B ) /\ k = ( K ` { x } ) ) /\ t e. B ) /\ X = ( t ( .r ` R ) x ) ) -> k =/= B ) |
45 |
35 44
|
eqnetrrd |
|- ( ( ( ( ( ( ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ -. ( M C_ k -> ( k = M \/ k = B ) ) ) /\ x e. B ) /\ k = ( K ` { x } ) ) /\ t e. B ) /\ X = ( t ( .r ` R ) x ) ) -> ( K ` { x } ) =/= B ) |
46 |
45
|
neneqd |
|- ( ( ( ( ( ( ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ -. ( M C_ k -> ( k = M \/ k = B ) ) ) /\ x e. B ) /\ k = ( K ` { x } ) ) /\ t e. B ) /\ X = ( t ( .r ` R ) x ) ) -> -. ( K ` { x } ) = B ) |
47 |
|
eqid |
|- ( K ` { x } ) = ( K ` { x } ) |
48 |
11
|
ad8antr |
|- ( ( ( ( ( ( ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ -. ( M C_ k -> ( k = M \/ k = B ) ) ) /\ x e. B ) /\ k = ( K ` { x } ) ) /\ t e. B ) /\ X = ( t ( .r ` R ) x ) ) -> R e. IDomn ) |
49 |
21 2 47 1 19 48
|
unitpidl1 |
|- ( ( ( ( ( ( ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ -. ( M C_ k -> ( k = M \/ k = B ) ) ) /\ x e. B ) /\ k = ( K ` { x } ) ) /\ t e. B ) /\ X = ( t ( .r ` R ) x ) ) -> ( ( K ` { x } ) = B <-> x e. ( Unit ` R ) ) ) |
50 |
46 49
|
mtbid |
|- ( ( ( ( ( ( ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ -. ( M C_ k -> ( k = M \/ k = B ) ) ) /\ x e. B ) /\ k = ( K ` { x } ) ) /\ t e. B ) /\ X = ( t ( .r ` R ) x ) ) -> -. x e. ( Unit ` R ) ) |
51 |
33 50
|
olcnd |
|- ( ( ( ( ( ( ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ -. ( M C_ k -> ( k = M \/ k = B ) ) ) /\ x e. B ) /\ k = ( K ` { x } ) ) /\ t e. B ) /\ X = ( t ( .r ` R ) x ) ) -> t e. ( Unit ` R ) ) |
52 |
28
|
eqcomd |
|- ( ( ( ( ( ( ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ -. ( M C_ k -> ( k = M \/ k = B ) ) ) /\ x e. B ) /\ k = ( K ` { x } ) ) /\ t e. B ) /\ X = ( t ( .r ` R ) x ) ) -> ( t ( .r ` R ) x ) = X ) |
53 |
1 2 17 19 20 21 22 26 51 52
|
dvdsruassoi |
|- ( ( ( ( ( ( ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ -. ( M C_ k -> ( k = M \/ k = B ) ) ) /\ x e. B ) /\ k = ( K ` { x } ) ) /\ t e. B ) /\ X = ( t ( .r ` R ) x ) ) -> ( x ( ||r ` R ) X /\ X ( ||r ` R ) x ) ) |
54 |
1 2 17 19 20 26
|
rspsnasso |
|- ( ( ( ( ( ( ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ -. ( M C_ k -> ( k = M \/ k = B ) ) ) /\ x e. B ) /\ k = ( K ` { x } ) ) /\ t e. B ) /\ X = ( t ( .r ` R ) x ) ) -> ( ( x ( ||r ` R ) X /\ X ( ||r ` R ) x ) <-> ( K ` { X } ) = ( K ` { x } ) ) ) |
55 |
53 54
|
mpbid |
|- ( ( ( ( ( ( ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ -. ( M C_ k -> ( k = M \/ k = B ) ) ) /\ x e. B ) /\ k = ( K ` { x } ) ) /\ t e. B ) /\ X = ( t ( .r ` R ) x ) ) -> ( K ` { X } ) = ( K ` { x } ) ) |
56 |
55 35
|
eqtr4d |
|- ( ( ( ( ( ( ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ -. ( M C_ k -> ( k = M \/ k = B ) ) ) /\ x e. B ) /\ k = ( K ` { x } ) ) /\ t e. B ) /\ X = ( t ( .r ` R ) x ) ) -> ( K ` { X } ) = k ) |
57 |
4 56
|
eqtr2id |
|- ( ( ( ( ( ( ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ -. ( M C_ k -> ( k = M \/ k = B ) ) ) /\ x e. B ) /\ k = ( K ` { x } ) ) /\ t e. B ) /\ X = ( t ( .r ` R ) x ) ) -> k = M ) |
58 |
41
|
simpld |
|- ( ( ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ -. ( M C_ k -> ( k = M \/ k = B ) ) ) -> -. k = M ) |
59 |
58
|
ad4antr |
|- ( ( ( ( ( ( ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ -. ( M C_ k -> ( k = M \/ k = B ) ) ) /\ x e. B ) /\ k = ( K ` { x } ) ) /\ t e. B ) /\ X = ( t ( .r ` R ) x ) ) -> -. k = M ) |
60 |
57 59
|
pm2.21dd |
|- ( ( ( ( ( ( ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ -. ( M C_ k -> ( k = M \/ k = B ) ) ) /\ x e. B ) /\ k = ( K ` { x } ) ) /\ t e. B ) /\ X = ( t ( .r ` R ) x ) ) -> M e. ( MaxIdeal ` R ) ) |
61 |
38
|
simpld |
|- ( ( ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ -. ( M C_ k -> ( k = M \/ k = B ) ) ) -> M C_ k ) |
62 |
61
|
ad2antrr |
|- ( ( ( ( ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ -. ( M C_ k -> ( k = M \/ k = B ) ) ) /\ x e. B ) /\ k = ( K ` { x } ) ) -> M C_ k ) |
63 |
6
|
snssd |
|- ( ph -> { X } C_ B ) |
64 |
2 1
|
rspssid |
|- ( ( R e. Ring /\ { X } C_ B ) -> { X } C_ ( K ` { X } ) ) |
65 |
23 63 64
|
syl2anc |
|- ( ph -> { X } C_ ( K ` { X } ) ) |
66 |
65 4
|
sseqtrrdi |
|- ( ph -> { X } C_ M ) |
67 |
|
snssg |
|- ( X e. B -> ( X e. M <-> { X } C_ M ) ) |
68 |
67
|
biimpar |
|- ( ( X e. B /\ { X } C_ M ) -> X e. M ) |
69 |
6 66 68
|
syl2anc |
|- ( ph -> X e. M ) |
70 |
69
|
ad6antr |
|- ( ( ( ( ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ -. ( M C_ k -> ( k = M \/ k = B ) ) ) /\ x e. B ) /\ k = ( K ` { x } ) ) -> X e. M ) |
71 |
62 70
|
sseldd |
|- ( ( ( ( ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ -. ( M C_ k -> ( k = M \/ k = B ) ) ) /\ x e. B ) /\ k = ( K ` { x } ) ) -> X e. k ) |
72 |
71 34
|
eleqtrd |
|- ( ( ( ( ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ -. ( M C_ k -> ( k = M \/ k = B ) ) ) /\ x e. B ) /\ k = ( K ` { x } ) ) -> X e. ( K ` { x } ) ) |
73 |
1 22 2
|
rspsnel |
|- ( ( R e. Ring /\ x e. B ) -> ( X e. ( K ` { x } ) <-> E. t e. B X = ( t ( .r ` R ) x ) ) ) |
74 |
73
|
biimpa |
|- ( ( ( R e. Ring /\ x e. B ) /\ X e. ( K ` { x } ) ) -> E. t e. B X = ( t ( .r ` R ) x ) ) |
75 |
25 18 72 74
|
syl21anc |
|- ( ( ( ( ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ -. ( M C_ k -> ( k = M \/ k = B ) ) ) /\ x e. B ) /\ k = ( K ` { x } ) ) -> E. t e. B X = ( t ( .r ` R ) x ) ) |
76 |
60 75
|
r19.29a |
|- ( ( ( ( ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ -. ( M C_ k -> ( k = M \/ k = B ) ) ) /\ x e. B ) /\ k = ( K ` { x } ) ) -> M e. ( MaxIdeal ` R ) ) |
77 |
|
simplr |
|- ( ( ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ -. ( M C_ k -> ( k = M \/ k = B ) ) ) -> k e. ( LIdeal ` R ) ) |
78 |
10
|
elin2d |
|- ( ph -> R e. LPIR ) |
79 |
|
eqid |
|- ( LPIdeal ` R ) = ( LPIdeal ` R ) |
80 |
|
eqid |
|- ( LIdeal ` R ) = ( LIdeal ` R ) |
81 |
79 80
|
islpir |
|- ( R e. LPIR <-> ( R e. Ring /\ ( LIdeal ` R ) = ( LPIdeal ` R ) ) ) |
82 |
81
|
simprbi |
|- ( R e. LPIR -> ( LIdeal ` R ) = ( LPIdeal ` R ) ) |
83 |
78 82
|
syl |
|- ( ph -> ( LIdeal ` R ) = ( LPIdeal ` R ) ) |
84 |
83
|
ad4antr |
|- ( ( ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ -. ( M C_ k -> ( k = M \/ k = B ) ) ) -> ( LIdeal ` R ) = ( LPIdeal ` R ) ) |
85 |
77 84
|
eleqtrd |
|- ( ( ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ -. ( M C_ k -> ( k = M \/ k = B ) ) ) -> k e. ( LPIdeal ` R ) ) |
86 |
79 2 1
|
islpidl |
|- ( R e. Ring -> ( k e. ( LPIdeal ` R ) <-> E. x e. B k = ( K ` { x } ) ) ) |
87 |
86
|
biimpa |
|- ( ( R e. Ring /\ k e. ( LPIdeal ` R ) ) -> E. x e. B k = ( K ` { x } ) ) |
88 |
24 85 87
|
syl2anc |
|- ( ( ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ -. ( M C_ k -> ( k = M \/ k = B ) ) ) -> E. x e. B k = ( K ` { x } ) ) |
89 |
76 88
|
r19.29a |
|- ( ( ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) /\ k e. ( LIdeal ` R ) ) /\ -. ( M C_ k -> ( k = M \/ k = B ) ) ) -> M e. ( MaxIdeal ` R ) ) |
90 |
8
|
ad2antrr |
|- ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) -> M e. ( LIdeal ` R ) ) |
91 |
31 21
|
irrednu |
|- ( X e. ( Irred ` R ) -> -. X e. ( Unit ` R ) ) |
92 |
91
|
adantl |
|- ( ( ph /\ X e. ( Irred ` R ) ) -> -. X e. ( Unit ` R ) ) |
93 |
21 2 4 1 6 11
|
unitpidl1 |
|- ( ph -> ( M = B <-> X e. ( Unit ` R ) ) ) |
94 |
93
|
adantr |
|- ( ( ph /\ X e. ( Irred ` R ) ) -> ( M = B <-> X e. ( Unit ` R ) ) ) |
95 |
94
|
necon3abid |
|- ( ( ph /\ X e. ( Irred ` R ) ) -> ( M =/= B <-> -. X e. ( Unit ` R ) ) ) |
96 |
92 95
|
mpbird |
|- ( ( ph /\ X e. ( Irred ` R ) ) -> M =/= B ) |
97 |
96
|
adantr |
|- ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) -> M =/= B ) |
98 |
90 97
|
jca |
|- ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) -> ( M e. ( LIdeal ` R ) /\ M =/= B ) ) |
99 |
1
|
ismxidl |
|- ( R e. Ring -> ( M e. ( MaxIdeal ` R ) <-> ( M e. ( LIdeal ` R ) /\ M =/= B /\ A. k e. ( LIdeal ` R ) ( M C_ k -> ( k = M \/ k = B ) ) ) ) ) |
100 |
23 99
|
syl |
|- ( ph -> ( M e. ( MaxIdeal ` R ) <-> ( M e. ( LIdeal ` R ) /\ M =/= B /\ A. k e. ( LIdeal ` R ) ( M C_ k -> ( k = M \/ k = B ) ) ) ) ) |
101 |
|
df-3an |
|- ( ( M e. ( LIdeal ` R ) /\ M =/= B /\ A. k e. ( LIdeal ` R ) ( M C_ k -> ( k = M \/ k = B ) ) ) <-> ( ( M e. ( LIdeal ` R ) /\ M =/= B ) /\ A. k e. ( LIdeal ` R ) ( M C_ k -> ( k = M \/ k = B ) ) ) ) |
102 |
100 101
|
bitrdi |
|- ( ph -> ( M e. ( MaxIdeal ` R ) <-> ( ( M e. ( LIdeal ` R ) /\ M =/= B ) /\ A. k e. ( LIdeal ` R ) ( M C_ k -> ( k = M \/ k = B ) ) ) ) ) |
103 |
102
|
notbid |
|- ( ph -> ( -. M e. ( MaxIdeal ` R ) <-> -. ( ( M e. ( LIdeal ` R ) /\ M =/= B ) /\ A. k e. ( LIdeal ` R ) ( M C_ k -> ( k = M \/ k = B ) ) ) ) ) |
104 |
103
|
biimpa |
|- ( ( ph /\ -. M e. ( MaxIdeal ` R ) ) -> -. ( ( M e. ( LIdeal ` R ) /\ M =/= B ) /\ A. k e. ( LIdeal ` R ) ( M C_ k -> ( k = M \/ k = B ) ) ) ) |
105 |
104
|
adantlr |
|- ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) -> -. ( ( M e. ( LIdeal ` R ) /\ M =/= B ) /\ A. k e. ( LIdeal ` R ) ( M C_ k -> ( k = M \/ k = B ) ) ) ) |
106 |
98 105
|
mpnanrd |
|- ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) -> -. A. k e. ( LIdeal ` R ) ( M C_ k -> ( k = M \/ k = B ) ) ) |
107 |
|
rexnal |
|- ( E. k e. ( LIdeal ` R ) -. ( M C_ k -> ( k = M \/ k = B ) ) <-> -. A. k e. ( LIdeal ` R ) ( M C_ k -> ( k = M \/ k = B ) ) ) |
108 |
106 107
|
sylibr |
|- ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) -> E. k e. ( LIdeal ` R ) -. ( M C_ k -> ( k = M \/ k = B ) ) ) |
109 |
89 108
|
r19.29a |
|- ( ( ( ph /\ X e. ( Irred ` R ) ) /\ -. M e. ( MaxIdeal ` R ) ) -> M e. ( MaxIdeal ` R ) ) |
110 |
109
|
pm2.18da |
|- ( ( ph /\ X e. ( Irred ` R ) ) -> M e. ( MaxIdeal ` R ) ) |
111 |
16 110
|
impbida |
|- ( ph -> ( M e. ( MaxIdeal ` R ) <-> X e. ( Irred ` R ) ) ) |