Step |
Hyp |
Ref |
Expression |
1 |
|
mxidlirredi.b |
|- B = ( Base ` R ) |
2 |
|
mxidlirredi.k |
|- K = ( RSpan ` R ) |
3 |
|
mxidlirredi.0 |
|- .0. = ( 0g ` R ) |
4 |
|
mxidlirredi.m |
|- M = ( K ` { X } ) |
5 |
|
mxidlirredi.r |
|- ( ph -> R e. IDomn ) |
6 |
|
mxidlirredi.x |
|- ( ph -> X e. B ) |
7 |
|
mxidlirredi.y |
|- ( ph -> X =/= .0. ) |
8 |
|
mxidlirredi.1 |
|- ( ph -> M e. ( MaxIdeal ` R ) ) |
9 |
5
|
idomringd |
|- ( ph -> R e. Ring ) |
10 |
1
|
mxidlnr |
|- ( ( R e. Ring /\ M e. ( MaxIdeal ` R ) ) -> M =/= B ) |
11 |
9 8 10
|
syl2anc |
|- ( ph -> M =/= B ) |
12 |
|
eqid |
|- ( Unit ` R ) = ( Unit ` R ) |
13 |
12 2 4 1 6 5
|
unitpidl1 |
|- ( ph -> ( M = B <-> X e. ( Unit ` R ) ) ) |
14 |
13
|
necon3abid |
|- ( ph -> ( M =/= B <-> -. X e. ( Unit ` R ) ) ) |
15 |
11 14
|
mpbid |
|- ( ph -> -. X e. ( Unit ` R ) ) |
16 |
6 15
|
eldifd |
|- ( ph -> X e. ( B \ ( Unit ` R ) ) ) |
17 |
9
|
ad3antrrr |
|- ( ( ( ( ph /\ f e. ( B \ ( Unit ` R ) ) ) /\ g e. ( B \ ( Unit ` R ) ) ) /\ ( f ( .r ` R ) g ) = X ) -> R e. Ring ) |
18 |
8
|
ad3antrrr |
|- ( ( ( ( ph /\ f e. ( B \ ( Unit ` R ) ) ) /\ g e. ( B \ ( Unit ` R ) ) ) /\ ( f ( .r ` R ) g ) = X ) -> M e. ( MaxIdeal ` R ) ) |
19 |
|
simplr |
|- ( ( ( ( ph /\ f e. ( B \ ( Unit ` R ) ) ) /\ g e. ( B \ ( Unit ` R ) ) ) /\ ( f ( .r ` R ) g ) = X ) -> g e. ( B \ ( Unit ` R ) ) ) |
20 |
19
|
eldifad |
|- ( ( ( ( ph /\ f e. ( B \ ( Unit ` R ) ) ) /\ g e. ( B \ ( Unit ` R ) ) ) /\ ( f ( .r ` R ) g ) = X ) -> g e. B ) |
21 |
20
|
snssd |
|- ( ( ( ( ph /\ f e. ( B \ ( Unit ` R ) ) ) /\ g e. ( B \ ( Unit ` R ) ) ) /\ ( f ( .r ` R ) g ) = X ) -> { g } C_ B ) |
22 |
|
eqid |
|- ( LIdeal ` R ) = ( LIdeal ` R ) |
23 |
2 1 22
|
rspcl |
|- ( ( R e. Ring /\ { g } C_ B ) -> ( K ` { g } ) e. ( LIdeal ` R ) ) |
24 |
17 21 23
|
syl2anc |
|- ( ( ( ( ph /\ f e. ( B \ ( Unit ` R ) ) ) /\ g e. ( B \ ( Unit ` R ) ) ) /\ ( f ( .r ` R ) g ) = X ) -> ( K ` { g } ) e. ( LIdeal ` R ) ) |
25 |
9
|
ad4antr |
|- ( ( ( ( ( ph /\ f e. ( B \ ( Unit ` R ) ) ) /\ g e. ( B \ ( Unit ` R ) ) ) /\ ( f ( .r ` R ) g ) = X ) /\ x e. M ) -> R e. Ring ) |
26 |
25
|
ad2antrr |
|- ( ( ( ( ( ( ( ph /\ f e. ( B \ ( Unit ` R ) ) ) /\ g e. ( B \ ( Unit ` R ) ) ) /\ ( f ( .r ` R ) g ) = X ) /\ x e. M ) /\ q e. B ) /\ x = ( q ( .r ` R ) X ) ) -> R e. Ring ) |
27 |
|
simp-5r |
|- ( ( ( ( ( ( ( ph /\ f e. ( B \ ( Unit ` R ) ) ) /\ g e. ( B \ ( Unit ` R ) ) ) /\ ( f ( .r ` R ) g ) = X ) /\ x e. M ) /\ q e. B ) /\ x = ( q ( .r ` R ) X ) ) -> g e. ( B \ ( Unit ` R ) ) ) |
28 |
27
|
eldifad |
|- ( ( ( ( ( ( ( ph /\ f e. ( B \ ( Unit ` R ) ) ) /\ g e. ( B \ ( Unit ` R ) ) ) /\ ( f ( .r ` R ) g ) = X ) /\ x e. M ) /\ q e. B ) /\ x = ( q ( .r ` R ) X ) ) -> g e. B ) |
29 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
30 |
|
simplr |
|- ( ( ( ( ( ( ( ph /\ f e. ( B \ ( Unit ` R ) ) ) /\ g e. ( B \ ( Unit ` R ) ) ) /\ ( f ( .r ` R ) g ) = X ) /\ x e. M ) /\ q e. B ) /\ x = ( q ( .r ` R ) X ) ) -> q e. B ) |
31 |
|
simp-6r |
|- ( ( ( ( ( ( ( ph /\ f e. ( B \ ( Unit ` R ) ) ) /\ g e. ( B \ ( Unit ` R ) ) ) /\ ( f ( .r ` R ) g ) = X ) /\ x e. M ) /\ q e. B ) /\ x = ( q ( .r ` R ) X ) ) -> f e. ( B \ ( Unit ` R ) ) ) |
32 |
31
|
eldifad |
|- ( ( ( ( ( ( ( ph /\ f e. ( B \ ( Unit ` R ) ) ) /\ g e. ( B \ ( Unit ` R ) ) ) /\ ( f ( .r ` R ) g ) = X ) /\ x e. M ) /\ q e. B ) /\ x = ( q ( .r ` R ) X ) ) -> f e. B ) |
33 |
1 29 26 30 32
|
ringcld |
|- ( ( ( ( ( ( ( ph /\ f e. ( B \ ( Unit ` R ) ) ) /\ g e. ( B \ ( Unit ` R ) ) ) /\ ( f ( .r ` R ) g ) = X ) /\ x e. M ) /\ q e. B ) /\ x = ( q ( .r ` R ) X ) ) -> ( q ( .r ` R ) f ) e. B ) |
34 |
|
oveq1 |
|- ( y = ( q ( .r ` R ) f ) -> ( y ( .r ` R ) g ) = ( ( q ( .r ` R ) f ) ( .r ` R ) g ) ) |
35 |
34
|
eqeq2d |
|- ( y = ( q ( .r ` R ) f ) -> ( x = ( y ( .r ` R ) g ) <-> x = ( ( q ( .r ` R ) f ) ( .r ` R ) g ) ) ) |
36 |
35
|
adantl |
|- ( ( ( ( ( ( ( ( ph /\ f e. ( B \ ( Unit ` R ) ) ) /\ g e. ( B \ ( Unit ` R ) ) ) /\ ( f ( .r ` R ) g ) = X ) /\ x e. M ) /\ q e. B ) /\ x = ( q ( .r ` R ) X ) ) /\ y = ( q ( .r ` R ) f ) ) -> ( x = ( y ( .r ` R ) g ) <-> x = ( ( q ( .r ` R ) f ) ( .r ` R ) g ) ) ) |
37 |
|
simp-4r |
|- ( ( ( ( ( ( ( ph /\ f e. ( B \ ( Unit ` R ) ) ) /\ g e. ( B \ ( Unit ` R ) ) ) /\ ( f ( .r ` R ) g ) = X ) /\ x e. M ) /\ q e. B ) /\ x = ( q ( .r ` R ) X ) ) -> ( f ( .r ` R ) g ) = X ) |
38 |
37
|
oveq2d |
|- ( ( ( ( ( ( ( ph /\ f e. ( B \ ( Unit ` R ) ) ) /\ g e. ( B \ ( Unit ` R ) ) ) /\ ( f ( .r ` R ) g ) = X ) /\ x e. M ) /\ q e. B ) /\ x = ( q ( .r ` R ) X ) ) -> ( q ( .r ` R ) ( f ( .r ` R ) g ) ) = ( q ( .r ` R ) X ) ) |
39 |
1 29 26 30 32 28
|
ringassd |
|- ( ( ( ( ( ( ( ph /\ f e. ( B \ ( Unit ` R ) ) ) /\ g e. ( B \ ( Unit ` R ) ) ) /\ ( f ( .r ` R ) g ) = X ) /\ x e. M ) /\ q e. B ) /\ x = ( q ( .r ` R ) X ) ) -> ( ( q ( .r ` R ) f ) ( .r ` R ) g ) = ( q ( .r ` R ) ( f ( .r ` R ) g ) ) ) |
40 |
|
simpr |
|- ( ( ( ( ( ( ( ph /\ f e. ( B \ ( Unit ` R ) ) ) /\ g e. ( B \ ( Unit ` R ) ) ) /\ ( f ( .r ` R ) g ) = X ) /\ x e. M ) /\ q e. B ) /\ x = ( q ( .r ` R ) X ) ) -> x = ( q ( .r ` R ) X ) ) |
41 |
38 39 40
|
3eqtr4rd |
|- ( ( ( ( ( ( ( ph /\ f e. ( B \ ( Unit ` R ) ) ) /\ g e. ( B \ ( Unit ` R ) ) ) /\ ( f ( .r ` R ) g ) = X ) /\ x e. M ) /\ q e. B ) /\ x = ( q ( .r ` R ) X ) ) -> x = ( ( q ( .r ` R ) f ) ( .r ` R ) g ) ) |
42 |
33 36 41
|
rspcedvd |
|- ( ( ( ( ( ( ( ph /\ f e. ( B \ ( Unit ` R ) ) ) /\ g e. ( B \ ( Unit ` R ) ) ) /\ ( f ( .r ` R ) g ) = X ) /\ x e. M ) /\ q e. B ) /\ x = ( q ( .r ` R ) X ) ) -> E. y e. B x = ( y ( .r ` R ) g ) ) |
43 |
1 29 2
|
rspsnel |
|- ( ( R e. Ring /\ g e. B ) -> ( x e. ( K ` { g } ) <-> E. y e. B x = ( y ( .r ` R ) g ) ) ) |
44 |
43
|
biimpar |
|- ( ( ( R e. Ring /\ g e. B ) /\ E. y e. B x = ( y ( .r ` R ) g ) ) -> x e. ( K ` { g } ) ) |
45 |
26 28 42 44
|
syl21anc |
|- ( ( ( ( ( ( ( ph /\ f e. ( B \ ( Unit ` R ) ) ) /\ g e. ( B \ ( Unit ` R ) ) ) /\ ( f ( .r ` R ) g ) = X ) /\ x e. M ) /\ q e. B ) /\ x = ( q ( .r ` R ) X ) ) -> x e. ( K ` { g } ) ) |
46 |
6
|
ad4antr |
|- ( ( ( ( ( ph /\ f e. ( B \ ( Unit ` R ) ) ) /\ g e. ( B \ ( Unit ` R ) ) ) /\ ( f ( .r ` R ) g ) = X ) /\ x e. M ) -> X e. B ) |
47 |
|
simpr |
|- ( ( ( ( ( ph /\ f e. ( B \ ( Unit ` R ) ) ) /\ g e. ( B \ ( Unit ` R ) ) ) /\ ( f ( .r ` R ) g ) = X ) /\ x e. M ) -> x e. M ) |
48 |
47 4
|
eleqtrdi |
|- ( ( ( ( ( ph /\ f e. ( B \ ( Unit ` R ) ) ) /\ g e. ( B \ ( Unit ` R ) ) ) /\ ( f ( .r ` R ) g ) = X ) /\ x e. M ) -> x e. ( K ` { X } ) ) |
49 |
1 29 2
|
rspsnel |
|- ( ( R e. Ring /\ X e. B ) -> ( x e. ( K ` { X } ) <-> E. q e. B x = ( q ( .r ` R ) X ) ) ) |
50 |
49
|
biimpa |
|- ( ( ( R e. Ring /\ X e. B ) /\ x e. ( K ` { X } ) ) -> E. q e. B x = ( q ( .r ` R ) X ) ) |
51 |
25 46 48 50
|
syl21anc |
|- ( ( ( ( ( ph /\ f e. ( B \ ( Unit ` R ) ) ) /\ g e. ( B \ ( Unit ` R ) ) ) /\ ( f ( .r ` R ) g ) = X ) /\ x e. M ) -> E. q e. B x = ( q ( .r ` R ) X ) ) |
52 |
45 51
|
r19.29a |
|- ( ( ( ( ( ph /\ f e. ( B \ ( Unit ` R ) ) ) /\ g e. ( B \ ( Unit ` R ) ) ) /\ ( f ( .r ` R ) g ) = X ) /\ x e. M ) -> x e. ( K ` { g } ) ) |
53 |
52
|
ex |
|- ( ( ( ( ph /\ f e. ( B \ ( Unit ` R ) ) ) /\ g e. ( B \ ( Unit ` R ) ) ) /\ ( f ( .r ` R ) g ) = X ) -> ( x e. M -> x e. ( K ` { g } ) ) ) |
54 |
53
|
ssrdv |
|- ( ( ( ( ph /\ f e. ( B \ ( Unit ` R ) ) ) /\ g e. ( B \ ( Unit ` R ) ) ) /\ ( f ( .r ` R ) g ) = X ) -> M C_ ( K ` { g } ) ) |
55 |
2 1
|
rspssid |
|- ( ( R e. Ring /\ { g } C_ B ) -> { g } C_ ( K ` { g } ) ) |
56 |
|
vex |
|- g e. _V |
57 |
56
|
snss |
|- ( g e. ( K ` { g } ) <-> { g } C_ ( K ` { g } ) ) |
58 |
55 57
|
sylibr |
|- ( ( R e. Ring /\ { g } C_ B ) -> g e. ( K ` { g } ) ) |
59 |
17 21 58
|
syl2anc |
|- ( ( ( ( ph /\ f e. ( B \ ( Unit ` R ) ) ) /\ g e. ( B \ ( Unit ` R ) ) ) /\ ( f ( .r ` R ) g ) = X ) -> g e. ( K ` { g } ) ) |
60 |
|
df-idom |
|- IDomn = ( CRing i^i Domn ) |
61 |
5 60
|
eleqtrdi |
|- ( ph -> R e. ( CRing i^i Domn ) ) |
62 |
61
|
elin1d |
|- ( ph -> R e. CRing ) |
63 |
62
|
ad6antr |
|- ( ( ( ( ( ( ( ph /\ f e. ( B \ ( Unit ` R ) ) ) /\ g e. ( B \ ( Unit ` R ) ) ) /\ ( f ( .r ` R ) g ) = X ) /\ g e. M ) /\ r e. B ) /\ g = ( r ( .r ` R ) X ) ) -> R e. CRing ) |
64 |
|
simplr |
|- ( ( ( ( ( ( ( ph /\ f e. ( B \ ( Unit ` R ) ) ) /\ g e. ( B \ ( Unit ` R ) ) ) /\ ( f ( .r ` R ) g ) = X ) /\ g e. M ) /\ r e. B ) /\ g = ( r ( .r ` R ) X ) ) -> r e. B ) |
65 |
|
simp-6r |
|- ( ( ( ( ( ( ( ph /\ f e. ( B \ ( Unit ` R ) ) ) /\ g e. ( B \ ( Unit ` R ) ) ) /\ ( f ( .r ` R ) g ) = X ) /\ g e. M ) /\ r e. B ) /\ g = ( r ( .r ` R ) X ) ) -> f e. ( B \ ( Unit ` R ) ) ) |
66 |
65
|
eldifad |
|- ( ( ( ( ( ( ( ph /\ f e. ( B \ ( Unit ` R ) ) ) /\ g e. ( B \ ( Unit ` R ) ) ) /\ ( f ( .r ` R ) g ) = X ) /\ g e. M ) /\ r e. B ) /\ g = ( r ( .r ` R ) X ) ) -> f e. B ) |
67 |
20
|
ad3antrrr |
|- ( ( ( ( ( ( ( ph /\ f e. ( B \ ( Unit ` R ) ) ) /\ g e. ( B \ ( Unit ` R ) ) ) /\ ( f ( .r ` R ) g ) = X ) /\ g e. M ) /\ r e. B ) /\ g = ( r ( .r ` R ) X ) ) -> g e. B ) |
68 |
|
simpr |
|- ( ( ( ( ( ( ( ( ph /\ f e. ( B \ ( Unit ` R ) ) ) /\ g e. ( B \ ( Unit ` R ) ) ) /\ ( f ( .r ` R ) g ) = X ) /\ g e. M ) /\ r e. B ) /\ g = ( r ( .r ` R ) X ) ) /\ g = .0. ) -> g = .0. ) |
69 |
68
|
oveq2d |
|- ( ( ( ( ( ( ( ( ph /\ f e. ( B \ ( Unit ` R ) ) ) /\ g e. ( B \ ( Unit ` R ) ) ) /\ ( f ( .r ` R ) g ) = X ) /\ g e. M ) /\ r e. B ) /\ g = ( r ( .r ` R ) X ) ) /\ g = .0. ) -> ( f ( .r ` R ) g ) = ( f ( .r ` R ) .0. ) ) |
70 |
|
simp-5r |
|- ( ( ( ( ( ( ( ( ph /\ f e. ( B \ ( Unit ` R ) ) ) /\ g e. ( B \ ( Unit ` R ) ) ) /\ ( f ( .r ` R ) g ) = X ) /\ g e. M ) /\ r e. B ) /\ g = ( r ( .r ` R ) X ) ) /\ g = .0. ) -> ( f ( .r ` R ) g ) = X ) |
71 |
17
|
adantr |
|- ( ( ( ( ( ph /\ f e. ( B \ ( Unit ` R ) ) ) /\ g e. ( B \ ( Unit ` R ) ) ) /\ ( f ( .r ` R ) g ) = X ) /\ g e. M ) -> R e. Ring ) |
72 |
71
|
ad3antrrr |
|- ( ( ( ( ( ( ( ( ph /\ f e. ( B \ ( Unit ` R ) ) ) /\ g e. ( B \ ( Unit ` R ) ) ) /\ ( f ( .r ` R ) g ) = X ) /\ g e. M ) /\ r e. B ) /\ g = ( r ( .r ` R ) X ) ) /\ g = .0. ) -> R e. Ring ) |
73 |
66
|
adantr |
|- ( ( ( ( ( ( ( ( ph /\ f e. ( B \ ( Unit ` R ) ) ) /\ g e. ( B \ ( Unit ` R ) ) ) /\ ( f ( .r ` R ) g ) = X ) /\ g e. M ) /\ r e. B ) /\ g = ( r ( .r ` R ) X ) ) /\ g = .0. ) -> f e. B ) |
74 |
1 29 3
|
ringrz |
|- ( ( R e. Ring /\ f e. B ) -> ( f ( .r ` R ) .0. ) = .0. ) |
75 |
72 73 74
|
syl2anc |
|- ( ( ( ( ( ( ( ( ph /\ f e. ( B \ ( Unit ` R ) ) ) /\ g e. ( B \ ( Unit ` R ) ) ) /\ ( f ( .r ` R ) g ) = X ) /\ g e. M ) /\ r e. B ) /\ g = ( r ( .r ` R ) X ) ) /\ g = .0. ) -> ( f ( .r ` R ) .0. ) = .0. ) |
76 |
69 70 75
|
3eqtr3d |
|- ( ( ( ( ( ( ( ( ph /\ f e. ( B \ ( Unit ` R ) ) ) /\ g e. ( B \ ( Unit ` R ) ) ) /\ ( f ( .r ` R ) g ) = X ) /\ g e. M ) /\ r e. B ) /\ g = ( r ( .r ` R ) X ) ) /\ g = .0. ) -> X = .0. ) |
77 |
7
|
neneqd |
|- ( ph -> -. X = .0. ) |
78 |
77
|
ad7antr |
|- ( ( ( ( ( ( ( ( ph /\ f e. ( B \ ( Unit ` R ) ) ) /\ g e. ( B \ ( Unit ` R ) ) ) /\ ( f ( .r ` R ) g ) = X ) /\ g e. M ) /\ r e. B ) /\ g = ( r ( .r ` R ) X ) ) /\ g = .0. ) -> -. X = .0. ) |
79 |
76 78
|
pm2.65da |
|- ( ( ( ( ( ( ( ph /\ f e. ( B \ ( Unit ` R ) ) ) /\ g e. ( B \ ( Unit ` R ) ) ) /\ ( f ( .r ` R ) g ) = X ) /\ g e. M ) /\ r e. B ) /\ g = ( r ( .r ` R ) X ) ) -> -. g = .0. ) |
80 |
79
|
neqned |
|- ( ( ( ( ( ( ( ph /\ f e. ( B \ ( Unit ` R ) ) ) /\ g e. ( B \ ( Unit ` R ) ) ) /\ ( f ( .r ` R ) g ) = X ) /\ g e. M ) /\ r e. B ) /\ g = ( r ( .r ` R ) X ) ) -> g =/= .0. ) |
81 |
|
eldifsn |
|- ( g e. ( B \ { .0. } ) <-> ( g e. B /\ g =/= .0. ) ) |
82 |
67 80 81
|
sylanbrc |
|- ( ( ( ( ( ( ( ph /\ f e. ( B \ ( Unit ` R ) ) ) /\ g e. ( B \ ( Unit ` R ) ) ) /\ ( f ( .r ` R ) g ) = X ) /\ g e. M ) /\ r e. B ) /\ g = ( r ( .r ` R ) X ) ) -> g e. ( B \ { .0. } ) ) |
83 |
71
|
ad2antrr |
|- ( ( ( ( ( ( ( ph /\ f e. ( B \ ( Unit ` R ) ) ) /\ g e. ( B \ ( Unit ` R ) ) ) /\ ( f ( .r ` R ) g ) = X ) /\ g e. M ) /\ r e. B ) /\ g = ( r ( .r ` R ) X ) ) -> R e. Ring ) |
84 |
1 29 83 64 66
|
ringcld |
|- ( ( ( ( ( ( ( ph /\ f e. ( B \ ( Unit ` R ) ) ) /\ g e. ( B \ ( Unit ` R ) ) ) /\ ( f ( .r ` R ) g ) = X ) /\ g e. M ) /\ r e. B ) /\ g = ( r ( .r ` R ) X ) ) -> ( r ( .r ` R ) f ) e. B ) |
85 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
86 |
1 85
|
ringidcl |
|- ( R e. Ring -> ( 1r ` R ) e. B ) |
87 |
9 86
|
syl |
|- ( ph -> ( 1r ` R ) e. B ) |
88 |
87
|
ad6antr |
|- ( ( ( ( ( ( ( ph /\ f e. ( B \ ( Unit ` R ) ) ) /\ g e. ( B \ ( Unit ` R ) ) ) /\ ( f ( .r ` R ) g ) = X ) /\ g e. M ) /\ r e. B ) /\ g = ( r ( .r ` R ) X ) ) -> ( 1r ` R ) e. B ) |
89 |
5
|
ad6antr |
|- ( ( ( ( ( ( ( ph /\ f e. ( B \ ( Unit ` R ) ) ) /\ g e. ( B \ ( Unit ` R ) ) ) /\ ( f ( .r ` R ) g ) = X ) /\ g e. M ) /\ r e. B ) /\ g = ( r ( .r ` R ) X ) ) -> R e. IDomn ) |
90 |
1 29 85 83 67
|
ringlidmd |
|- ( ( ( ( ( ( ( ph /\ f e. ( B \ ( Unit ` R ) ) ) /\ g e. ( B \ ( Unit ` R ) ) ) /\ ( f ( .r ` R ) g ) = X ) /\ g e. M ) /\ r e. B ) /\ g = ( r ( .r ` R ) X ) ) -> ( ( 1r ` R ) ( .r ` R ) g ) = g ) |
91 |
|
simpr |
|- ( ( ( ( ( ( ( ph /\ f e. ( B \ ( Unit ` R ) ) ) /\ g e. ( B \ ( Unit ` R ) ) ) /\ ( f ( .r ` R ) g ) = X ) /\ g e. M ) /\ r e. B ) /\ g = ( r ( .r ` R ) X ) ) -> g = ( r ( .r ` R ) X ) ) |
92 |
1 29 83 64 66 67
|
ringassd |
|- ( ( ( ( ( ( ( ph /\ f e. ( B \ ( Unit ` R ) ) ) /\ g e. ( B \ ( Unit ` R ) ) ) /\ ( f ( .r ` R ) g ) = X ) /\ g e. M ) /\ r e. B ) /\ g = ( r ( .r ` R ) X ) ) -> ( ( r ( .r ` R ) f ) ( .r ` R ) g ) = ( r ( .r ` R ) ( f ( .r ` R ) g ) ) ) |
93 |
|
simp-4r |
|- ( ( ( ( ( ( ( ph /\ f e. ( B \ ( Unit ` R ) ) ) /\ g e. ( B \ ( Unit ` R ) ) ) /\ ( f ( .r ` R ) g ) = X ) /\ g e. M ) /\ r e. B ) /\ g = ( r ( .r ` R ) X ) ) -> ( f ( .r ` R ) g ) = X ) |
94 |
93
|
oveq2d |
|- ( ( ( ( ( ( ( ph /\ f e. ( B \ ( Unit ` R ) ) ) /\ g e. ( B \ ( Unit ` R ) ) ) /\ ( f ( .r ` R ) g ) = X ) /\ g e. M ) /\ r e. B ) /\ g = ( r ( .r ` R ) X ) ) -> ( r ( .r ` R ) ( f ( .r ` R ) g ) ) = ( r ( .r ` R ) X ) ) |
95 |
92 94
|
eqtr2d |
|- ( ( ( ( ( ( ( ph /\ f e. ( B \ ( Unit ` R ) ) ) /\ g e. ( B \ ( Unit ` R ) ) ) /\ ( f ( .r ` R ) g ) = X ) /\ g e. M ) /\ r e. B ) /\ g = ( r ( .r ` R ) X ) ) -> ( r ( .r ` R ) X ) = ( ( r ( .r ` R ) f ) ( .r ` R ) g ) ) |
96 |
90 91 95
|
3eqtrrd |
|- ( ( ( ( ( ( ( ph /\ f e. ( B \ ( Unit ` R ) ) ) /\ g e. ( B \ ( Unit ` R ) ) ) /\ ( f ( .r ` R ) g ) = X ) /\ g e. M ) /\ r e. B ) /\ g = ( r ( .r ` R ) X ) ) -> ( ( r ( .r ` R ) f ) ( .r ` R ) g ) = ( ( 1r ` R ) ( .r ` R ) g ) ) |
97 |
1 3 29 82 84 88 89 96
|
idomrcan |
|- ( ( ( ( ( ( ( ph /\ f e. ( B \ ( Unit ` R ) ) ) /\ g e. ( B \ ( Unit ` R ) ) ) /\ ( f ( .r ` R ) g ) = X ) /\ g e. M ) /\ r e. B ) /\ g = ( r ( .r ` R ) X ) ) -> ( r ( .r ` R ) f ) = ( 1r ` R ) ) |
98 |
12 85
|
1unit |
|- ( R e. Ring -> ( 1r ` R ) e. ( Unit ` R ) ) |
99 |
9 98
|
syl |
|- ( ph -> ( 1r ` R ) e. ( Unit ` R ) ) |
100 |
99
|
ad6antr |
|- ( ( ( ( ( ( ( ph /\ f e. ( B \ ( Unit ` R ) ) ) /\ g e. ( B \ ( Unit ` R ) ) ) /\ ( f ( .r ` R ) g ) = X ) /\ g e. M ) /\ r e. B ) /\ g = ( r ( .r ` R ) X ) ) -> ( 1r ` R ) e. ( Unit ` R ) ) |
101 |
97 100
|
eqeltrd |
|- ( ( ( ( ( ( ( ph /\ f e. ( B \ ( Unit ` R ) ) ) /\ g e. ( B \ ( Unit ` R ) ) ) /\ ( f ( .r ` R ) g ) = X ) /\ g e. M ) /\ r e. B ) /\ g = ( r ( .r ` R ) X ) ) -> ( r ( .r ` R ) f ) e. ( Unit ` R ) ) |
102 |
12 29 1
|
unitmulclb |
|- ( ( R e. CRing /\ r e. B /\ f e. B ) -> ( ( r ( .r ` R ) f ) e. ( Unit ` R ) <-> ( r e. ( Unit ` R ) /\ f e. ( Unit ` R ) ) ) ) |
103 |
102
|
simplbda |
|- ( ( ( R e. CRing /\ r e. B /\ f e. B ) /\ ( r ( .r ` R ) f ) e. ( Unit ` R ) ) -> f e. ( Unit ` R ) ) |
104 |
63 64 66 101 103
|
syl31anc |
|- ( ( ( ( ( ( ( ph /\ f e. ( B \ ( Unit ` R ) ) ) /\ g e. ( B \ ( Unit ` R ) ) ) /\ ( f ( .r ` R ) g ) = X ) /\ g e. M ) /\ r e. B ) /\ g = ( r ( .r ` R ) X ) ) -> f e. ( Unit ` R ) ) |
105 |
6
|
ad4antr |
|- ( ( ( ( ( ph /\ f e. ( B \ ( Unit ` R ) ) ) /\ g e. ( B \ ( Unit ` R ) ) ) /\ ( f ( .r ` R ) g ) = X ) /\ g e. M ) -> X e. B ) |
106 |
|
simpr |
|- ( ( ( ( ( ph /\ f e. ( B \ ( Unit ` R ) ) ) /\ g e. ( B \ ( Unit ` R ) ) ) /\ ( f ( .r ` R ) g ) = X ) /\ g e. M ) -> g e. M ) |
107 |
106 4
|
eleqtrdi |
|- ( ( ( ( ( ph /\ f e. ( B \ ( Unit ` R ) ) ) /\ g e. ( B \ ( Unit ` R ) ) ) /\ ( f ( .r ` R ) g ) = X ) /\ g e. M ) -> g e. ( K ` { X } ) ) |
108 |
1 29 2
|
rspsnel |
|- ( ( R e. Ring /\ X e. B ) -> ( g e. ( K ` { X } ) <-> E. r e. B g = ( r ( .r ` R ) X ) ) ) |
109 |
108
|
biimpa |
|- ( ( ( R e. Ring /\ X e. B ) /\ g e. ( K ` { X } ) ) -> E. r e. B g = ( r ( .r ` R ) X ) ) |
110 |
71 105 107 109
|
syl21anc |
|- ( ( ( ( ( ph /\ f e. ( B \ ( Unit ` R ) ) ) /\ g e. ( B \ ( Unit ` R ) ) ) /\ ( f ( .r ` R ) g ) = X ) /\ g e. M ) -> E. r e. B g = ( r ( .r ` R ) X ) ) |
111 |
104 110
|
r19.29a |
|- ( ( ( ( ( ph /\ f e. ( B \ ( Unit ` R ) ) ) /\ g e. ( B \ ( Unit ` R ) ) ) /\ ( f ( .r ` R ) g ) = X ) /\ g e. M ) -> f e. ( Unit ` R ) ) |
112 |
|
simp-4r |
|- ( ( ( ( ( ph /\ f e. ( B \ ( Unit ` R ) ) ) /\ g e. ( B \ ( Unit ` R ) ) ) /\ ( f ( .r ` R ) g ) = X ) /\ g e. M ) -> f e. ( B \ ( Unit ` R ) ) ) |
113 |
112
|
eldifbd |
|- ( ( ( ( ( ph /\ f e. ( B \ ( Unit ` R ) ) ) /\ g e. ( B \ ( Unit ` R ) ) ) /\ ( f ( .r ` R ) g ) = X ) /\ g e. M ) -> -. f e. ( Unit ` R ) ) |
114 |
111 113
|
pm2.65da |
|- ( ( ( ( ph /\ f e. ( B \ ( Unit ` R ) ) ) /\ g e. ( B \ ( Unit ` R ) ) ) /\ ( f ( .r ` R ) g ) = X ) -> -. g e. M ) |
115 |
59 114
|
eldifd |
|- ( ( ( ( ph /\ f e. ( B \ ( Unit ` R ) ) ) /\ g e. ( B \ ( Unit ` R ) ) ) /\ ( f ( .r ` R ) g ) = X ) -> g e. ( ( K ` { g } ) \ M ) ) |
116 |
1 17 18 24 54 115
|
mxidlmaxv |
|- ( ( ( ( ph /\ f e. ( B \ ( Unit ` R ) ) ) /\ g e. ( B \ ( Unit ` R ) ) ) /\ ( f ( .r ` R ) g ) = X ) -> ( K ` { g } ) = B ) |
117 |
|
eqid |
|- ( K ` { g } ) = ( K ` { g } ) |
118 |
5
|
ad3antrrr |
|- ( ( ( ( ph /\ f e. ( B \ ( Unit ` R ) ) ) /\ g e. ( B \ ( Unit ` R ) ) ) /\ ( f ( .r ` R ) g ) = X ) -> R e. IDomn ) |
119 |
12 2 117 1 20 118
|
unitpidl1 |
|- ( ( ( ( ph /\ f e. ( B \ ( Unit ` R ) ) ) /\ g e. ( B \ ( Unit ` R ) ) ) /\ ( f ( .r ` R ) g ) = X ) -> ( ( K ` { g } ) = B <-> g e. ( Unit ` R ) ) ) |
120 |
116 119
|
mpbid |
|- ( ( ( ( ph /\ f e. ( B \ ( Unit ` R ) ) ) /\ g e. ( B \ ( Unit ` R ) ) ) /\ ( f ( .r ` R ) g ) = X ) -> g e. ( Unit ` R ) ) |
121 |
19
|
eldifbd |
|- ( ( ( ( ph /\ f e. ( B \ ( Unit ` R ) ) ) /\ g e. ( B \ ( Unit ` R ) ) ) /\ ( f ( .r ` R ) g ) = X ) -> -. g e. ( Unit ` R ) ) |
122 |
120 121
|
pm2.65da |
|- ( ( ( ph /\ f e. ( B \ ( Unit ` R ) ) ) /\ g e. ( B \ ( Unit ` R ) ) ) -> -. ( f ( .r ` R ) g ) = X ) |
123 |
122
|
anasss |
|- ( ( ph /\ ( f e. ( B \ ( Unit ` R ) ) /\ g e. ( B \ ( Unit ` R ) ) ) ) -> -. ( f ( .r ` R ) g ) = X ) |
124 |
123
|
neqned |
|- ( ( ph /\ ( f e. ( B \ ( Unit ` R ) ) /\ g e. ( B \ ( Unit ` R ) ) ) ) -> ( f ( .r ` R ) g ) =/= X ) |
125 |
124
|
ralrimivva |
|- ( ph -> A. f e. ( B \ ( Unit ` R ) ) A. g e. ( B \ ( Unit ` R ) ) ( f ( .r ` R ) g ) =/= X ) |
126 |
|
eqid |
|- ( Irred ` R ) = ( Irred ` R ) |
127 |
|
eqid |
|- ( B \ ( Unit ` R ) ) = ( B \ ( Unit ` R ) ) |
128 |
1 12 126 127 29
|
isirred |
|- ( X e. ( Irred ` R ) <-> ( X e. ( B \ ( Unit ` R ) ) /\ A. f e. ( B \ ( Unit ` R ) ) A. g e. ( B \ ( Unit ` R ) ) ( f ( .r ` R ) g ) =/= X ) ) |
129 |
16 125 128
|
sylanbrc |
|- ( ph -> X e. ( Irred ` R ) ) |