| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mxidlmaxv.1 |  |-  B = ( Base ` R ) | 
						
							| 2 |  | mxidlmaxv.2 |  |-  ( ph -> R e. Ring ) | 
						
							| 3 |  | mxidlmaxv.3 |  |-  ( ph -> M e. ( MaxIdeal ` R ) ) | 
						
							| 4 |  | mxidlmaxv.4 |  |-  ( ph -> I e. ( LIdeal ` R ) ) | 
						
							| 5 |  | mxidlmaxv.5 |  |-  ( ph -> M C_ I ) | 
						
							| 6 |  | mxidlmaxv.6 |  |-  ( ph -> X e. ( I \ M ) ) | 
						
							| 7 | 1 | mxidlmax |  |-  ( ( ( R e. Ring /\ M e. ( MaxIdeal ` R ) ) /\ ( I e. ( LIdeal ` R ) /\ M C_ I ) ) -> ( I = M \/ I = B ) ) | 
						
							| 8 | 2 3 4 5 7 | syl22anc |  |-  ( ph -> ( I = M \/ I = B ) ) | 
						
							| 9 | 6 | eldifad |  |-  ( ph -> X e. I ) | 
						
							| 10 | 6 | eldifbd |  |-  ( ph -> -. X e. M ) | 
						
							| 11 |  | nelne1 |  |-  ( ( X e. I /\ -. X e. M ) -> I =/= M ) | 
						
							| 12 | 9 10 11 | syl2anc |  |-  ( ph -> I =/= M ) | 
						
							| 13 | 12 | neneqd |  |-  ( ph -> -. I = M ) | 
						
							| 14 | 8 13 | orcnd |  |-  ( ph -> I = B ) |