| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mxidlmaxv.1 |
|- B = ( Base ` R ) |
| 2 |
|
mxidlmaxv.2 |
|- ( ph -> R e. Ring ) |
| 3 |
|
mxidlmaxv.3 |
|- ( ph -> M e. ( MaxIdeal ` R ) ) |
| 4 |
|
mxidlmaxv.4 |
|- ( ph -> I e. ( LIdeal ` R ) ) |
| 5 |
|
mxidlmaxv.5 |
|- ( ph -> M C_ I ) |
| 6 |
|
mxidlmaxv.6 |
|- ( ph -> X e. ( I \ M ) ) |
| 7 |
1
|
mxidlmax |
|- ( ( ( R e. Ring /\ M e. ( MaxIdeal ` R ) ) /\ ( I e. ( LIdeal ` R ) /\ M C_ I ) ) -> ( I = M \/ I = B ) ) |
| 8 |
2 3 4 5 7
|
syl22anc |
|- ( ph -> ( I = M \/ I = B ) ) |
| 9 |
6
|
eldifad |
|- ( ph -> X e. I ) |
| 10 |
6
|
eldifbd |
|- ( ph -> -. X e. M ) |
| 11 |
|
nelne1 |
|- ( ( X e. I /\ -. X e. M ) -> I =/= M ) |
| 12 |
9 10 11
|
syl2anc |
|- ( ph -> I =/= M ) |
| 13 |
12
|
neneqd |
|- ( ph -> -. I = M ) |
| 14 |
8 13
|
orcnd |
|- ( ph -> I = B ) |