| Step |
Hyp |
Ref |
Expression |
| 1 |
|
crngmxidl.i |
|- M = ( MaxIdeal ` R ) |
| 2 |
|
crngmxidl.o |
|- O = ( oppR ` R ) |
| 3 |
1
|
eleq2i |
|- ( m e. M <-> m e. ( MaxIdeal ` R ) ) |
| 4 |
|
eqid |
|- ( LIdeal ` R ) = ( LIdeal ` R ) |
| 5 |
4 2
|
crngridl |
|- ( R e. CRing -> ( LIdeal ` R ) = ( LIdeal ` O ) ) |
| 6 |
5
|
eleq2d |
|- ( R e. CRing -> ( m e. ( LIdeal ` R ) <-> m e. ( LIdeal ` O ) ) ) |
| 7 |
5
|
raleqdv |
|- ( R e. CRing -> ( A. j e. ( LIdeal ` R ) ( m C_ j -> ( j = m \/ j = ( Base ` R ) ) ) <-> A. j e. ( LIdeal ` O ) ( m C_ j -> ( j = m \/ j = ( Base ` R ) ) ) ) ) |
| 8 |
6 7
|
3anbi13d |
|- ( R e. CRing -> ( ( m e. ( LIdeal ` R ) /\ m =/= ( Base ` R ) /\ A. j e. ( LIdeal ` R ) ( m C_ j -> ( j = m \/ j = ( Base ` R ) ) ) ) <-> ( m e. ( LIdeal ` O ) /\ m =/= ( Base ` R ) /\ A. j e. ( LIdeal ` O ) ( m C_ j -> ( j = m \/ j = ( Base ` R ) ) ) ) ) ) |
| 9 |
|
crngring |
|- ( R e. CRing -> R e. Ring ) |
| 10 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 11 |
10
|
ismxidl |
|- ( R e. Ring -> ( m e. ( MaxIdeal ` R ) <-> ( m e. ( LIdeal ` R ) /\ m =/= ( Base ` R ) /\ A. j e. ( LIdeal ` R ) ( m C_ j -> ( j = m \/ j = ( Base ` R ) ) ) ) ) ) |
| 12 |
9 11
|
syl |
|- ( R e. CRing -> ( m e. ( MaxIdeal ` R ) <-> ( m e. ( LIdeal ` R ) /\ m =/= ( Base ` R ) /\ A. j e. ( LIdeal ` R ) ( m C_ j -> ( j = m \/ j = ( Base ` R ) ) ) ) ) ) |
| 13 |
2
|
opprring |
|- ( R e. Ring -> O e. Ring ) |
| 14 |
2 10
|
opprbas |
|- ( Base ` R ) = ( Base ` O ) |
| 15 |
14
|
ismxidl |
|- ( O e. Ring -> ( m e. ( MaxIdeal ` O ) <-> ( m e. ( LIdeal ` O ) /\ m =/= ( Base ` R ) /\ A. j e. ( LIdeal ` O ) ( m C_ j -> ( j = m \/ j = ( Base ` R ) ) ) ) ) ) |
| 16 |
9 13 15
|
3syl |
|- ( R e. CRing -> ( m e. ( MaxIdeal ` O ) <-> ( m e. ( LIdeal ` O ) /\ m =/= ( Base ` R ) /\ A. j e. ( LIdeal ` O ) ( m C_ j -> ( j = m \/ j = ( Base ` R ) ) ) ) ) ) |
| 17 |
8 12 16
|
3bitr4d |
|- ( R e. CRing -> ( m e. ( MaxIdeal ` R ) <-> m e. ( MaxIdeal ` O ) ) ) |
| 18 |
3 17
|
bitrid |
|- ( R e. CRing -> ( m e. M <-> m e. ( MaxIdeal ` O ) ) ) |
| 19 |
18
|
eqrdv |
|- ( R e. CRing -> M = ( MaxIdeal ` O ) ) |