| Step |
Hyp |
Ref |
Expression |
| 1 |
|
crng2idl.i |
|- I = ( LIdeal ` R ) |
| 2 |
|
crngridl.o |
|- O = ( oppR ` R ) |
| 3 |
|
eqidd |
|- ( R e. CRing -> ( Base ` R ) = ( Base ` R ) ) |
| 4 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 5 |
2 4
|
opprbas |
|- ( Base ` R ) = ( Base ` O ) |
| 6 |
5
|
a1i |
|- ( R e. CRing -> ( Base ` R ) = ( Base ` O ) ) |
| 7 |
|
ssv |
|- ( Base ` R ) C_ _V |
| 8 |
7
|
a1i |
|- ( R e. CRing -> ( Base ` R ) C_ _V ) |
| 9 |
|
eqid |
|- ( +g ` R ) = ( +g ` R ) |
| 10 |
2 9
|
oppradd |
|- ( +g ` R ) = ( +g ` O ) |
| 11 |
10
|
oveqi |
|- ( x ( +g ` R ) y ) = ( x ( +g ` O ) y ) |
| 12 |
11
|
a1i |
|- ( ( R e. CRing /\ ( x e. _V /\ y e. _V ) ) -> ( x ( +g ` R ) y ) = ( x ( +g ` O ) y ) ) |
| 13 |
|
ovexd |
|- ( ( R e. CRing /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) ) ) -> ( x ( .r ` R ) y ) e. _V ) |
| 14 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
| 15 |
|
eqid |
|- ( .r ` O ) = ( .r ` O ) |
| 16 |
4 14 2 15
|
crngoppr |
|- ( ( R e. CRing /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) -> ( x ( .r ` R ) y ) = ( x ( .r ` O ) y ) ) |
| 17 |
16
|
3expb |
|- ( ( R e. CRing /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) ) ) -> ( x ( .r ` R ) y ) = ( x ( .r ` O ) y ) ) |
| 18 |
3 6 8 12 13 17
|
lidlrsppropd |
|- ( R e. CRing -> ( ( LIdeal ` R ) = ( LIdeal ` O ) /\ ( RSpan ` R ) = ( RSpan ` O ) ) ) |
| 19 |
18
|
simpld |
|- ( R e. CRing -> ( LIdeal ` R ) = ( LIdeal ` O ) ) |
| 20 |
1 19
|
eqtrid |
|- ( R e. CRing -> I = ( LIdeal ` O ) ) |