Step |
Hyp |
Ref |
Expression |
1 |
|
lidlpropd.1 |
|- ( ph -> B = ( Base ` K ) ) |
2 |
|
lidlpropd.2 |
|- ( ph -> B = ( Base ` L ) ) |
3 |
|
lidlpropd.3 |
|- ( ph -> B C_ W ) |
4 |
|
lidlpropd.4 |
|- ( ( ph /\ ( x e. W /\ y e. W ) ) -> ( x ( +g ` K ) y ) = ( x ( +g ` L ) y ) ) |
5 |
|
lidlpropd.5 |
|- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( .r ` K ) y ) e. W ) |
6 |
|
lidlpropd.6 |
|- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( .r ` K ) y ) = ( x ( .r ` L ) y ) ) |
7 |
|
rlmbas |
|- ( Base ` K ) = ( Base ` ( ringLMod ` K ) ) |
8 |
1 7
|
eqtrdi |
|- ( ph -> B = ( Base ` ( ringLMod ` K ) ) ) |
9 |
|
rlmbas |
|- ( Base ` L ) = ( Base ` ( ringLMod ` L ) ) |
10 |
2 9
|
eqtrdi |
|- ( ph -> B = ( Base ` ( ringLMod ` L ) ) ) |
11 |
|
rlmplusg |
|- ( +g ` K ) = ( +g ` ( ringLMod ` K ) ) |
12 |
11
|
oveqi |
|- ( x ( +g ` K ) y ) = ( x ( +g ` ( ringLMod ` K ) ) y ) |
13 |
|
rlmplusg |
|- ( +g ` L ) = ( +g ` ( ringLMod ` L ) ) |
14 |
13
|
oveqi |
|- ( x ( +g ` L ) y ) = ( x ( +g ` ( ringLMod ` L ) ) y ) |
15 |
4 12 14
|
3eqtr3g |
|- ( ( ph /\ ( x e. W /\ y e. W ) ) -> ( x ( +g ` ( ringLMod ` K ) ) y ) = ( x ( +g ` ( ringLMod ` L ) ) y ) ) |
16 |
|
rlmvsca |
|- ( .r ` K ) = ( .s ` ( ringLMod ` K ) ) |
17 |
16
|
oveqi |
|- ( x ( .r ` K ) y ) = ( x ( .s ` ( ringLMod ` K ) ) y ) |
18 |
17 5
|
eqeltrrid |
|- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( .s ` ( ringLMod ` K ) ) y ) e. W ) |
19 |
|
rlmvsca |
|- ( .r ` L ) = ( .s ` ( ringLMod ` L ) ) |
20 |
19
|
oveqi |
|- ( x ( .r ` L ) y ) = ( x ( .s ` ( ringLMod ` L ) ) y ) |
21 |
6 17 20
|
3eqtr3g |
|- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( .s ` ( ringLMod ` K ) ) y ) = ( x ( .s ` ( ringLMod ` L ) ) y ) ) |
22 |
|
baseid |
|- Base = Slot ( Base ` ndx ) |
23 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
24 |
22 23
|
strfvi |
|- ( Base ` K ) = ( Base ` ( _I ` K ) ) |
25 |
|
rlmsca2 |
|- ( _I ` K ) = ( Scalar ` ( ringLMod ` K ) ) |
26 |
25
|
fveq2i |
|- ( Base ` ( _I ` K ) ) = ( Base ` ( Scalar ` ( ringLMod ` K ) ) ) |
27 |
24 26
|
eqtri |
|- ( Base ` K ) = ( Base ` ( Scalar ` ( ringLMod ` K ) ) ) |
28 |
1 27
|
eqtrdi |
|- ( ph -> B = ( Base ` ( Scalar ` ( ringLMod ` K ) ) ) ) |
29 |
|
eqid |
|- ( Base ` L ) = ( Base ` L ) |
30 |
22 29
|
strfvi |
|- ( Base ` L ) = ( Base ` ( _I ` L ) ) |
31 |
|
rlmsca2 |
|- ( _I ` L ) = ( Scalar ` ( ringLMod ` L ) ) |
32 |
31
|
fveq2i |
|- ( Base ` ( _I ` L ) ) = ( Base ` ( Scalar ` ( ringLMod ` L ) ) ) |
33 |
30 32
|
eqtri |
|- ( Base ` L ) = ( Base ` ( Scalar ` ( ringLMod ` L ) ) ) |
34 |
2 33
|
eqtrdi |
|- ( ph -> B = ( Base ` ( Scalar ` ( ringLMod ` L ) ) ) ) |
35 |
8 10 3 15 18 21 28 34
|
lsspropd |
|- ( ph -> ( LSubSp ` ( ringLMod ` K ) ) = ( LSubSp ` ( ringLMod ` L ) ) ) |
36 |
|
lidlval |
|- ( LIdeal ` K ) = ( LSubSp ` ( ringLMod ` K ) ) |
37 |
|
lidlval |
|- ( LIdeal ` L ) = ( LSubSp ` ( ringLMod ` L ) ) |
38 |
35 36 37
|
3eqtr4g |
|- ( ph -> ( LIdeal ` K ) = ( LIdeal ` L ) ) |
39 |
|
fvexd |
|- ( ph -> ( ringLMod ` K ) e. _V ) |
40 |
|
fvexd |
|- ( ph -> ( ringLMod ` L ) e. _V ) |
41 |
8 10 3 15 18 21 28 34 39 40
|
lsppropd |
|- ( ph -> ( LSpan ` ( ringLMod ` K ) ) = ( LSpan ` ( ringLMod ` L ) ) ) |
42 |
|
rspval |
|- ( RSpan ` K ) = ( LSpan ` ( ringLMod ` K ) ) |
43 |
|
rspval |
|- ( RSpan ` L ) = ( LSpan ` ( ringLMod ` L ) ) |
44 |
41 42 43
|
3eqtr4g |
|- ( ph -> ( RSpan ` K ) = ( RSpan ` L ) ) |
45 |
38 44
|
jca |
|- ( ph -> ( ( LIdeal ` K ) = ( LIdeal ` L ) /\ ( RSpan ` K ) = ( RSpan ` L ) ) ) |