| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lidlpropd.1 |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐾 ) ) |
| 2 |
|
lidlpropd.2 |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐿 ) ) |
| 3 |
|
lidlpropd.3 |
⊢ ( 𝜑 → 𝐵 ⊆ 𝑊 ) |
| 4 |
|
lidlpropd.4 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊 ) ) → ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) |
| 5 |
|
lidlpropd.5 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( .r ‘ 𝐾 ) 𝑦 ) ∈ 𝑊 ) |
| 6 |
|
lidlpropd.6 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( .r ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 ) ) |
| 7 |
|
rlmbas |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ ( ringLMod ‘ 𝐾 ) ) |
| 8 |
1 7
|
eqtrdi |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ ( ringLMod ‘ 𝐾 ) ) ) |
| 9 |
|
rlmbas |
⊢ ( Base ‘ 𝐿 ) = ( Base ‘ ( ringLMod ‘ 𝐿 ) ) |
| 10 |
2 9
|
eqtrdi |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ ( ringLMod ‘ 𝐿 ) ) ) |
| 11 |
|
rlmplusg |
⊢ ( +g ‘ 𝐾 ) = ( +g ‘ ( ringLMod ‘ 𝐾 ) ) |
| 12 |
11
|
oveqi |
⊢ ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( +g ‘ ( ringLMod ‘ 𝐾 ) ) 𝑦 ) |
| 13 |
|
rlmplusg |
⊢ ( +g ‘ 𝐿 ) = ( +g ‘ ( ringLMod ‘ 𝐿 ) ) |
| 14 |
13
|
oveqi |
⊢ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) = ( 𝑥 ( +g ‘ ( ringLMod ‘ 𝐿 ) ) 𝑦 ) |
| 15 |
4 12 14
|
3eqtr3g |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊 ) ) → ( 𝑥 ( +g ‘ ( ringLMod ‘ 𝐾 ) ) 𝑦 ) = ( 𝑥 ( +g ‘ ( ringLMod ‘ 𝐿 ) ) 𝑦 ) ) |
| 16 |
|
rlmvsca |
⊢ ( .r ‘ 𝐾 ) = ( ·𝑠 ‘ ( ringLMod ‘ 𝐾 ) ) |
| 17 |
16
|
oveqi |
⊢ ( 𝑥 ( .r ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( ·𝑠 ‘ ( ringLMod ‘ 𝐾 ) ) 𝑦 ) |
| 18 |
17 5
|
eqeltrrid |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( ·𝑠 ‘ ( ringLMod ‘ 𝐾 ) ) 𝑦 ) ∈ 𝑊 ) |
| 19 |
|
rlmvsca |
⊢ ( .r ‘ 𝐿 ) = ( ·𝑠 ‘ ( ringLMod ‘ 𝐿 ) ) |
| 20 |
19
|
oveqi |
⊢ ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 ) = ( 𝑥 ( ·𝑠 ‘ ( ringLMod ‘ 𝐿 ) ) 𝑦 ) |
| 21 |
6 17 20
|
3eqtr3g |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( ·𝑠 ‘ ( ringLMod ‘ 𝐾 ) ) 𝑦 ) = ( 𝑥 ( ·𝑠 ‘ ( ringLMod ‘ 𝐿 ) ) 𝑦 ) ) |
| 22 |
|
baseid |
⊢ Base = Slot ( Base ‘ ndx ) |
| 23 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
| 24 |
22 23
|
strfvi |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ ( I ‘ 𝐾 ) ) |
| 25 |
|
rlmsca2 |
⊢ ( I ‘ 𝐾 ) = ( Scalar ‘ ( ringLMod ‘ 𝐾 ) ) |
| 26 |
25
|
fveq2i |
⊢ ( Base ‘ ( I ‘ 𝐾 ) ) = ( Base ‘ ( Scalar ‘ ( ringLMod ‘ 𝐾 ) ) ) |
| 27 |
24 26
|
eqtri |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ ( Scalar ‘ ( ringLMod ‘ 𝐾 ) ) ) |
| 28 |
1 27
|
eqtrdi |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ ( Scalar ‘ ( ringLMod ‘ 𝐾 ) ) ) ) |
| 29 |
|
eqid |
⊢ ( Base ‘ 𝐿 ) = ( Base ‘ 𝐿 ) |
| 30 |
22 29
|
strfvi |
⊢ ( Base ‘ 𝐿 ) = ( Base ‘ ( I ‘ 𝐿 ) ) |
| 31 |
|
rlmsca2 |
⊢ ( I ‘ 𝐿 ) = ( Scalar ‘ ( ringLMod ‘ 𝐿 ) ) |
| 32 |
31
|
fveq2i |
⊢ ( Base ‘ ( I ‘ 𝐿 ) ) = ( Base ‘ ( Scalar ‘ ( ringLMod ‘ 𝐿 ) ) ) |
| 33 |
30 32
|
eqtri |
⊢ ( Base ‘ 𝐿 ) = ( Base ‘ ( Scalar ‘ ( ringLMod ‘ 𝐿 ) ) ) |
| 34 |
2 33
|
eqtrdi |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ ( Scalar ‘ ( ringLMod ‘ 𝐿 ) ) ) ) |
| 35 |
8 10 3 15 18 21 28 34
|
lsspropd |
⊢ ( 𝜑 → ( LSubSp ‘ ( ringLMod ‘ 𝐾 ) ) = ( LSubSp ‘ ( ringLMod ‘ 𝐿 ) ) ) |
| 36 |
|
lidlval |
⊢ ( LIdeal ‘ 𝐾 ) = ( LSubSp ‘ ( ringLMod ‘ 𝐾 ) ) |
| 37 |
|
lidlval |
⊢ ( LIdeal ‘ 𝐿 ) = ( LSubSp ‘ ( ringLMod ‘ 𝐿 ) ) |
| 38 |
35 36 37
|
3eqtr4g |
⊢ ( 𝜑 → ( LIdeal ‘ 𝐾 ) = ( LIdeal ‘ 𝐿 ) ) |
| 39 |
|
fvexd |
⊢ ( 𝜑 → ( ringLMod ‘ 𝐾 ) ∈ V ) |
| 40 |
|
fvexd |
⊢ ( 𝜑 → ( ringLMod ‘ 𝐿 ) ∈ V ) |
| 41 |
8 10 3 15 18 21 28 34 39 40
|
lsppropd |
⊢ ( 𝜑 → ( LSpan ‘ ( ringLMod ‘ 𝐾 ) ) = ( LSpan ‘ ( ringLMod ‘ 𝐿 ) ) ) |
| 42 |
|
rspval |
⊢ ( RSpan ‘ 𝐾 ) = ( LSpan ‘ ( ringLMod ‘ 𝐾 ) ) |
| 43 |
|
rspval |
⊢ ( RSpan ‘ 𝐿 ) = ( LSpan ‘ ( ringLMod ‘ 𝐿 ) ) |
| 44 |
41 42 43
|
3eqtr4g |
⊢ ( 𝜑 → ( RSpan ‘ 𝐾 ) = ( RSpan ‘ 𝐿 ) ) |
| 45 |
38 44
|
jca |
⊢ ( 𝜑 → ( ( LIdeal ‘ 𝐾 ) = ( LIdeal ‘ 𝐿 ) ∧ ( RSpan ‘ 𝐾 ) = ( RSpan ‘ 𝐿 ) ) ) |