Step |
Hyp |
Ref |
Expression |
1 |
|
rnglidlabl.l |
⊢ 𝐿 = ( LIdeal ‘ 𝑅 ) |
2 |
|
rnglidlabl.i |
⊢ 𝐼 = ( 𝑅 ↾s 𝑈 ) |
3 |
|
rnglidlabl.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
4 |
|
simp1 |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 0 ∈ 𝑈 ) → 𝑅 ∈ Rng ) |
5 |
1 2
|
lidlbas |
⊢ ( 𝑈 ∈ 𝐿 → ( Base ‘ 𝐼 ) = 𝑈 ) |
6 |
|
eleq1a |
⊢ ( 𝑈 ∈ 𝐿 → ( ( Base ‘ 𝐼 ) = 𝑈 → ( Base ‘ 𝐼 ) ∈ 𝐿 ) ) |
7 |
5 6
|
mpd |
⊢ ( 𝑈 ∈ 𝐿 → ( Base ‘ 𝐼 ) ∈ 𝐿 ) |
8 |
7
|
3ad2ant2 |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 0 ∈ 𝑈 ) → ( Base ‘ 𝐼 ) ∈ 𝐿 ) |
9 |
5
|
eqcomd |
⊢ ( 𝑈 ∈ 𝐿 → 𝑈 = ( Base ‘ 𝐼 ) ) |
10 |
9
|
eleq2d |
⊢ ( 𝑈 ∈ 𝐿 → ( 0 ∈ 𝑈 ↔ 0 ∈ ( Base ‘ 𝐼 ) ) ) |
11 |
10
|
biimpa |
⊢ ( ( 𝑈 ∈ 𝐿 ∧ 0 ∈ 𝑈 ) → 0 ∈ ( Base ‘ 𝐼 ) ) |
12 |
11
|
3adant1 |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 0 ∈ 𝑈 ) → 0 ∈ ( Base ‘ 𝐼 ) ) |
13 |
4 8 12
|
3jca |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 0 ∈ 𝑈 ) → ( 𝑅 ∈ Rng ∧ ( Base ‘ 𝐼 ) ∈ 𝐿 ∧ 0 ∈ ( Base ‘ 𝐼 ) ) ) |
14 |
1 2
|
lidlssbas |
⊢ ( 𝑈 ∈ 𝐿 → ( Base ‘ 𝐼 ) ⊆ ( Base ‘ 𝑅 ) ) |
15 |
14
|
sseld |
⊢ ( 𝑈 ∈ 𝐿 → ( 𝑎 ∈ ( Base ‘ 𝐼 ) → 𝑎 ∈ ( Base ‘ 𝑅 ) ) ) |
16 |
15
|
3ad2ant2 |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 0 ∈ 𝑈 ) → ( 𝑎 ∈ ( Base ‘ 𝐼 ) → 𝑎 ∈ ( Base ‘ 𝑅 ) ) ) |
17 |
16
|
anim1d |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 0 ∈ 𝑈 ) → ( ( 𝑎 ∈ ( Base ‘ 𝐼 ) ∧ 𝑏 ∈ ( Base ‘ 𝐼 ) ) → ( 𝑎 ∈ ( Base ‘ 𝑅 ) ∧ 𝑏 ∈ ( Base ‘ 𝐼 ) ) ) ) |
18 |
17
|
imp |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 0 ∈ 𝑈 ) ∧ ( 𝑎 ∈ ( Base ‘ 𝐼 ) ∧ 𝑏 ∈ ( Base ‘ 𝐼 ) ) ) → ( 𝑎 ∈ ( Base ‘ 𝑅 ) ∧ 𝑏 ∈ ( Base ‘ 𝐼 ) ) ) |
19 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
20 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
21 |
3 19 20 1
|
rnglidlmcl |
⊢ ( ( ( 𝑅 ∈ Rng ∧ ( Base ‘ 𝐼 ) ∈ 𝐿 ∧ 0 ∈ ( Base ‘ 𝐼 ) ) ∧ ( 𝑎 ∈ ( Base ‘ 𝑅 ) ∧ 𝑏 ∈ ( Base ‘ 𝐼 ) ) ) → ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) ∈ ( Base ‘ 𝐼 ) ) |
22 |
13 18 21
|
syl2an2r |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 0 ∈ 𝑈 ) ∧ ( 𝑎 ∈ ( Base ‘ 𝐼 ) ∧ 𝑏 ∈ ( Base ‘ 𝐼 ) ) ) → ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) ∈ ( Base ‘ 𝐼 ) ) |
23 |
2 20
|
ressmulr |
⊢ ( 𝑈 ∈ 𝐿 → ( .r ‘ 𝑅 ) = ( .r ‘ 𝐼 ) ) |
24 |
23
|
eqcomd |
⊢ ( 𝑈 ∈ 𝐿 → ( .r ‘ 𝐼 ) = ( .r ‘ 𝑅 ) ) |
25 |
24
|
oveqd |
⊢ ( 𝑈 ∈ 𝐿 → ( 𝑎 ( .r ‘ 𝐼 ) 𝑏 ) = ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) ) |
26 |
25
|
eleq1d |
⊢ ( 𝑈 ∈ 𝐿 → ( ( 𝑎 ( .r ‘ 𝐼 ) 𝑏 ) ∈ ( Base ‘ 𝐼 ) ↔ ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) ∈ ( Base ‘ 𝐼 ) ) ) |
27 |
26
|
3ad2ant2 |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 0 ∈ 𝑈 ) → ( ( 𝑎 ( .r ‘ 𝐼 ) 𝑏 ) ∈ ( Base ‘ 𝐼 ) ↔ ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) ∈ ( Base ‘ 𝐼 ) ) ) |
28 |
27
|
adantr |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 0 ∈ 𝑈 ) ∧ ( 𝑎 ∈ ( Base ‘ 𝐼 ) ∧ 𝑏 ∈ ( Base ‘ 𝐼 ) ) ) → ( ( 𝑎 ( .r ‘ 𝐼 ) 𝑏 ) ∈ ( Base ‘ 𝐼 ) ↔ ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) ∈ ( Base ‘ 𝐼 ) ) ) |
29 |
22 28
|
mpbird |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 0 ∈ 𝑈 ) ∧ ( 𝑎 ∈ ( Base ‘ 𝐼 ) ∧ 𝑏 ∈ ( Base ‘ 𝐼 ) ) ) → ( 𝑎 ( .r ‘ 𝐼 ) 𝑏 ) ∈ ( Base ‘ 𝐼 ) ) |
30 |
29
|
ralrimivva |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 0 ∈ 𝑈 ) → ∀ 𝑎 ∈ ( Base ‘ 𝐼 ) ∀ 𝑏 ∈ ( Base ‘ 𝐼 ) ( 𝑎 ( .r ‘ 𝐼 ) 𝑏 ) ∈ ( Base ‘ 𝐼 ) ) |
31 |
|
fvex |
⊢ ( mulGrp ‘ 𝐼 ) ∈ V |
32 |
|
eqid |
⊢ ( mulGrp ‘ 𝐼 ) = ( mulGrp ‘ 𝐼 ) |
33 |
|
eqid |
⊢ ( Base ‘ 𝐼 ) = ( Base ‘ 𝐼 ) |
34 |
32 33
|
mgpbas |
⊢ ( Base ‘ 𝐼 ) = ( Base ‘ ( mulGrp ‘ 𝐼 ) ) |
35 |
|
eqid |
⊢ ( .r ‘ 𝐼 ) = ( .r ‘ 𝐼 ) |
36 |
32 35
|
mgpplusg |
⊢ ( .r ‘ 𝐼 ) = ( +g ‘ ( mulGrp ‘ 𝐼 ) ) |
37 |
34 36
|
ismgm |
⊢ ( ( mulGrp ‘ 𝐼 ) ∈ V → ( ( mulGrp ‘ 𝐼 ) ∈ Mgm ↔ ∀ 𝑎 ∈ ( Base ‘ 𝐼 ) ∀ 𝑏 ∈ ( Base ‘ 𝐼 ) ( 𝑎 ( .r ‘ 𝐼 ) 𝑏 ) ∈ ( Base ‘ 𝐼 ) ) ) |
38 |
31 37
|
mp1i |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 0 ∈ 𝑈 ) → ( ( mulGrp ‘ 𝐼 ) ∈ Mgm ↔ ∀ 𝑎 ∈ ( Base ‘ 𝐼 ) ∀ 𝑏 ∈ ( Base ‘ 𝐼 ) ( 𝑎 ( .r ‘ 𝐼 ) 𝑏 ) ∈ ( Base ‘ 𝐼 ) ) ) |
39 |
30 38
|
mpbird |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 0 ∈ 𝑈 ) → ( mulGrp ‘ 𝐼 ) ∈ Mgm ) |