Metamath Proof Explorer


Theorem rnglidlmmgm

Description: The multiplicative group of a (left) ideal of a non-unital ring is a magma. (Contributed by AV, 17-Feb-2020) Generalization for non-unital rings. The assumption .0. e. U is required because a left ideal of a non-unital ring does not have to be a subgroup. (Revised by AV, 11-Mar-2025)

Ref Expression
Hypotheses rnglidlabl.l 𝐿 = ( LIdeal ‘ 𝑅 )
rnglidlabl.i 𝐼 = ( 𝑅s 𝑈 )
rnglidlabl.z 0 = ( 0g𝑅 )
Assertion rnglidlmmgm ( ( 𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈 ) → ( mulGrp ‘ 𝐼 ) ∈ Mgm )

Proof

Step Hyp Ref Expression
1 rnglidlabl.l 𝐿 = ( LIdeal ‘ 𝑅 )
2 rnglidlabl.i 𝐼 = ( 𝑅s 𝑈 )
3 rnglidlabl.z 0 = ( 0g𝑅 )
4 simp1 ( ( 𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈 ) → 𝑅 ∈ Rng )
5 1 2 lidlbas ( 𝑈𝐿 → ( Base ‘ 𝐼 ) = 𝑈 )
6 eleq1a ( 𝑈𝐿 → ( ( Base ‘ 𝐼 ) = 𝑈 → ( Base ‘ 𝐼 ) ∈ 𝐿 ) )
7 5 6 mpd ( 𝑈𝐿 → ( Base ‘ 𝐼 ) ∈ 𝐿 )
8 7 3ad2ant2 ( ( 𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈 ) → ( Base ‘ 𝐼 ) ∈ 𝐿 )
9 5 eqcomd ( 𝑈𝐿𝑈 = ( Base ‘ 𝐼 ) )
10 9 eleq2d ( 𝑈𝐿 → ( 0𝑈0 ∈ ( Base ‘ 𝐼 ) ) )
11 10 biimpa ( ( 𝑈𝐿0𝑈 ) → 0 ∈ ( Base ‘ 𝐼 ) )
12 11 3adant1 ( ( 𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈 ) → 0 ∈ ( Base ‘ 𝐼 ) )
13 4 8 12 3jca ( ( 𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈 ) → ( 𝑅 ∈ Rng ∧ ( Base ‘ 𝐼 ) ∈ 𝐿0 ∈ ( Base ‘ 𝐼 ) ) )
14 1 2 lidlssbas ( 𝑈𝐿 → ( Base ‘ 𝐼 ) ⊆ ( Base ‘ 𝑅 ) )
15 14 sseld ( 𝑈𝐿 → ( 𝑎 ∈ ( Base ‘ 𝐼 ) → 𝑎 ∈ ( Base ‘ 𝑅 ) ) )
16 15 3ad2ant2 ( ( 𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈 ) → ( 𝑎 ∈ ( Base ‘ 𝐼 ) → 𝑎 ∈ ( Base ‘ 𝑅 ) ) )
17 16 anim1d ( ( 𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈 ) → ( ( 𝑎 ∈ ( Base ‘ 𝐼 ) ∧ 𝑏 ∈ ( Base ‘ 𝐼 ) ) → ( 𝑎 ∈ ( Base ‘ 𝑅 ) ∧ 𝑏 ∈ ( Base ‘ 𝐼 ) ) ) )
18 17 imp ( ( ( 𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈 ) ∧ ( 𝑎 ∈ ( Base ‘ 𝐼 ) ∧ 𝑏 ∈ ( Base ‘ 𝐼 ) ) ) → ( 𝑎 ∈ ( Base ‘ 𝑅 ) ∧ 𝑏 ∈ ( Base ‘ 𝐼 ) ) )
19 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
20 eqid ( .r𝑅 ) = ( .r𝑅 )
21 3 19 20 1 rnglidlmcl ( ( ( 𝑅 ∈ Rng ∧ ( Base ‘ 𝐼 ) ∈ 𝐿0 ∈ ( Base ‘ 𝐼 ) ) ∧ ( 𝑎 ∈ ( Base ‘ 𝑅 ) ∧ 𝑏 ∈ ( Base ‘ 𝐼 ) ) ) → ( 𝑎 ( .r𝑅 ) 𝑏 ) ∈ ( Base ‘ 𝐼 ) )
22 13 18 21 syl2an2r ( ( ( 𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈 ) ∧ ( 𝑎 ∈ ( Base ‘ 𝐼 ) ∧ 𝑏 ∈ ( Base ‘ 𝐼 ) ) ) → ( 𝑎 ( .r𝑅 ) 𝑏 ) ∈ ( Base ‘ 𝐼 ) )
23 2 20 ressmulr ( 𝑈𝐿 → ( .r𝑅 ) = ( .r𝐼 ) )
24 23 eqcomd ( 𝑈𝐿 → ( .r𝐼 ) = ( .r𝑅 ) )
25 24 oveqd ( 𝑈𝐿 → ( 𝑎 ( .r𝐼 ) 𝑏 ) = ( 𝑎 ( .r𝑅 ) 𝑏 ) )
26 25 eleq1d ( 𝑈𝐿 → ( ( 𝑎 ( .r𝐼 ) 𝑏 ) ∈ ( Base ‘ 𝐼 ) ↔ ( 𝑎 ( .r𝑅 ) 𝑏 ) ∈ ( Base ‘ 𝐼 ) ) )
27 26 3ad2ant2 ( ( 𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈 ) → ( ( 𝑎 ( .r𝐼 ) 𝑏 ) ∈ ( Base ‘ 𝐼 ) ↔ ( 𝑎 ( .r𝑅 ) 𝑏 ) ∈ ( Base ‘ 𝐼 ) ) )
28 27 adantr ( ( ( 𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈 ) ∧ ( 𝑎 ∈ ( Base ‘ 𝐼 ) ∧ 𝑏 ∈ ( Base ‘ 𝐼 ) ) ) → ( ( 𝑎 ( .r𝐼 ) 𝑏 ) ∈ ( Base ‘ 𝐼 ) ↔ ( 𝑎 ( .r𝑅 ) 𝑏 ) ∈ ( Base ‘ 𝐼 ) ) )
29 22 28 mpbird ( ( ( 𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈 ) ∧ ( 𝑎 ∈ ( Base ‘ 𝐼 ) ∧ 𝑏 ∈ ( Base ‘ 𝐼 ) ) ) → ( 𝑎 ( .r𝐼 ) 𝑏 ) ∈ ( Base ‘ 𝐼 ) )
30 29 ralrimivva ( ( 𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈 ) → ∀ 𝑎 ∈ ( Base ‘ 𝐼 ) ∀ 𝑏 ∈ ( Base ‘ 𝐼 ) ( 𝑎 ( .r𝐼 ) 𝑏 ) ∈ ( Base ‘ 𝐼 ) )
31 fvex ( mulGrp ‘ 𝐼 ) ∈ V
32 eqid ( mulGrp ‘ 𝐼 ) = ( mulGrp ‘ 𝐼 )
33 eqid ( Base ‘ 𝐼 ) = ( Base ‘ 𝐼 )
34 32 33 mgpbas ( Base ‘ 𝐼 ) = ( Base ‘ ( mulGrp ‘ 𝐼 ) )
35 eqid ( .r𝐼 ) = ( .r𝐼 )
36 32 35 mgpplusg ( .r𝐼 ) = ( +g ‘ ( mulGrp ‘ 𝐼 ) )
37 34 36 ismgm ( ( mulGrp ‘ 𝐼 ) ∈ V → ( ( mulGrp ‘ 𝐼 ) ∈ Mgm ↔ ∀ 𝑎 ∈ ( Base ‘ 𝐼 ) ∀ 𝑏 ∈ ( Base ‘ 𝐼 ) ( 𝑎 ( .r𝐼 ) 𝑏 ) ∈ ( Base ‘ 𝐼 ) ) )
38 31 37 mp1i ( ( 𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈 ) → ( ( mulGrp ‘ 𝐼 ) ∈ Mgm ↔ ∀ 𝑎 ∈ ( Base ‘ 𝐼 ) ∀ 𝑏 ∈ ( Base ‘ 𝐼 ) ( 𝑎 ( .r𝐼 ) 𝑏 ) ∈ ( Base ‘ 𝐼 ) ) )
39 30 38 mpbird ( ( 𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈 ) → ( mulGrp ‘ 𝐼 ) ∈ Mgm )