Metamath Proof Explorer


Theorem lidlbas

Description: A (left) ideal of a ring is the base set of the restriction of the ring to this ideal. (Contributed by AV, 17-Feb-2020)

Ref Expression
Hypotheses lidlabl.l 𝐿 = ( LIdeal ‘ 𝑅 )
lidlabl.i 𝐼 = ( 𝑅s 𝑈 )
Assertion lidlbas ( 𝑈𝐿 → ( Base ‘ 𝐼 ) = 𝑈 )

Proof

Step Hyp Ref Expression
1 lidlabl.l 𝐿 = ( LIdeal ‘ 𝑅 )
2 lidlabl.i 𝐼 = ( 𝑅s 𝑈 )
3 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
4 2 3 ressbas ( 𝑈𝐿 → ( 𝑈 ∩ ( Base ‘ 𝑅 ) ) = ( Base ‘ 𝐼 ) )
5 3 1 lidlss ( 𝑈𝐿𝑈 ⊆ ( Base ‘ 𝑅 ) )
6 df-ss ( 𝑈 ⊆ ( Base ‘ 𝑅 ) ↔ ( 𝑈 ∩ ( Base ‘ 𝑅 ) ) = 𝑈 )
7 5 6 sylib ( 𝑈𝐿 → ( 𝑈 ∩ ( Base ‘ 𝑅 ) ) = 𝑈 )
8 4 7 eqtr3d ( 𝑈𝐿 → ( Base ‘ 𝐼 ) = 𝑈 )