Description: A (left) ideal of a ring is the base set of the restriction of the ring to this ideal. (Contributed by AV, 17-Feb-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lidlabl.l | ⊢ 𝐿 = ( LIdeal ‘ 𝑅 ) | |
lidlabl.i | ⊢ 𝐼 = ( 𝑅 ↾s 𝑈 ) | ||
Assertion | lidlbas | ⊢ ( 𝑈 ∈ 𝐿 → ( Base ‘ 𝐼 ) = 𝑈 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lidlabl.l | ⊢ 𝐿 = ( LIdeal ‘ 𝑅 ) | |
2 | lidlabl.i | ⊢ 𝐼 = ( 𝑅 ↾s 𝑈 ) | |
3 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
4 | 2 3 | ressbas | ⊢ ( 𝑈 ∈ 𝐿 → ( 𝑈 ∩ ( Base ‘ 𝑅 ) ) = ( Base ‘ 𝐼 ) ) |
5 | 3 1 | lidlss | ⊢ ( 𝑈 ∈ 𝐿 → 𝑈 ⊆ ( Base ‘ 𝑅 ) ) |
6 | df-ss | ⊢ ( 𝑈 ⊆ ( Base ‘ 𝑅 ) ↔ ( 𝑈 ∩ ( Base ‘ 𝑅 ) ) = 𝑈 ) | |
7 | 5 6 | sylib | ⊢ ( 𝑈 ∈ 𝐿 → ( 𝑈 ∩ ( Base ‘ 𝑅 ) ) = 𝑈 ) |
8 | 4 7 | eqtr3d | ⊢ ( 𝑈 ∈ 𝐿 → ( Base ‘ 𝐼 ) = 𝑈 ) |