Metamath Proof Explorer


Theorem lidlbas

Description: A (left) ideal of a ring is the base set of the restriction of the ring to this ideal. (Contributed by AV, 17-Feb-2020)

Ref Expression
Hypotheses lidlssbas.l L=LIdealR
lidlssbas.i I=R𝑠U
Assertion lidlbas ULBaseI=U

Proof

Step Hyp Ref Expression
1 lidlssbas.l L=LIdealR
2 lidlssbas.i I=R𝑠U
3 eqid BaseR=BaseR
4 2 3 ressbas ULUBaseR=BaseI
5 3 1 lidlss ULUBaseR
6 df-ss UBaseRUBaseR=U
7 5 6 sylib ULUBaseR=U
8 4 7 eqtr3d ULBaseI=U