Metamath Proof Explorer


Theorem lidlbas

Description: A (left) ideal of a ring is the base set of the restriction of the ring to this ideal. (Contributed by AV, 17-Feb-2020)

Ref Expression
Hypotheses lidlabl.l L = LIdeal R
lidlabl.i I = R 𝑠 U
Assertion lidlbas U L Base I = U

Proof

Step Hyp Ref Expression
1 lidlabl.l L = LIdeal R
2 lidlabl.i I = R 𝑠 U
3 eqid Base R = Base R
4 2 3 ressbas U L U Base R = Base I
5 3 1 lidlss U L U Base R
6 df-ss U Base R U Base R = U
7 5 6 sylib U L U Base R = U
8 4 7 eqtr3d U L Base I = U