Description: A (left) ideal of a ring is the base set of the restriction of the ring to this ideal. (Contributed by AV, 17-Feb-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lidlabl.l | |- L = ( LIdeal ` R ) |
|
lidlabl.i | |- I = ( R |`s U ) |
||
Assertion | lidlbas | |- ( U e. L -> ( Base ` I ) = U ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lidlabl.l | |- L = ( LIdeal ` R ) |
|
2 | lidlabl.i | |- I = ( R |`s U ) |
|
3 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
4 | 2 3 | ressbas | |- ( U e. L -> ( U i^i ( Base ` R ) ) = ( Base ` I ) ) |
5 | 3 1 | lidlss | |- ( U e. L -> U C_ ( Base ` R ) ) |
6 | df-ss | |- ( U C_ ( Base ` R ) <-> ( U i^i ( Base ` R ) ) = U ) |
|
7 | 5 6 | sylib | |- ( U e. L -> ( U i^i ( Base ` R ) ) = U ) |
8 | 4 7 | eqtr3d | |- ( U e. L -> ( Base ` I ) = U ) |