Metamath Proof Explorer


Theorem lidlssbas

Description: The base set of the restriction of the ring to a (left) ideal is a subset of the base set of the ring. (Contributed by AV, 17-Feb-2020)

Ref Expression
Hypotheses lidlabl.l 𝐿 = ( LIdeal ‘ 𝑅 )
lidlabl.i 𝐼 = ( 𝑅s 𝑈 )
Assertion lidlssbas ( 𝑈𝐿 → ( Base ‘ 𝐼 ) ⊆ ( Base ‘ 𝑅 ) )

Proof

Step Hyp Ref Expression
1 lidlabl.l 𝐿 = ( LIdeal ‘ 𝑅 )
2 lidlabl.i 𝐼 = ( 𝑅s 𝑈 )
3 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
4 2 3 ressbas ( 𝑈𝐿 → ( 𝑈 ∩ ( Base ‘ 𝑅 ) ) = ( Base ‘ 𝐼 ) )
5 inss2 ( 𝑈 ∩ ( Base ‘ 𝑅 ) ) ⊆ ( Base ‘ 𝑅 )
6 4 5 eqsstrrdi ( 𝑈𝐿 → ( Base ‘ 𝐼 ) ⊆ ( Base ‘ 𝑅 ) )