Description: The base set of the restriction of the ring to a (left) ideal is a subset of the base set of the ring. (Contributed by AV, 17-Feb-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lidlabl.l | |- L = ( LIdeal ` R ) |
|
lidlabl.i | |- I = ( R |`s U ) |
||
Assertion | lidlssbas | |- ( U e. L -> ( Base ` I ) C_ ( Base ` R ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lidlabl.l | |- L = ( LIdeal ` R ) |
|
2 | lidlabl.i | |- I = ( R |`s U ) |
|
3 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
4 | 2 3 | ressbas | |- ( U e. L -> ( U i^i ( Base ` R ) ) = ( Base ` I ) ) |
5 | inss2 | |- ( U i^i ( Base ` R ) ) C_ ( Base ` R ) |
|
6 | 4 5 | eqsstrrdi | |- ( U e. L -> ( Base ` I ) C_ ( Base ` R ) ) |