Metamath Proof Explorer


Theorem lidlssbas

Description: The base set of the restriction of the ring to a (left) ideal is a subset of the base set of the ring. (Contributed by AV, 17-Feb-2020)

Ref Expression
Hypotheses lidlabl.l
|- L = ( LIdeal ` R )
lidlabl.i
|- I = ( R |`s U )
Assertion lidlssbas
|- ( U e. L -> ( Base ` I ) C_ ( Base ` R ) )

Proof

Step Hyp Ref Expression
1 lidlabl.l
 |-  L = ( LIdeal ` R )
2 lidlabl.i
 |-  I = ( R |`s U )
3 eqid
 |-  ( Base ` R ) = ( Base ` R )
4 2 3 ressbas
 |-  ( U e. L -> ( U i^i ( Base ` R ) ) = ( Base ` I ) )
5 inss2
 |-  ( U i^i ( Base ` R ) ) C_ ( Base ` R )
6 4 5 eqsstrrdi
 |-  ( U e. L -> ( Base ` I ) C_ ( Base ` R ) )