Metamath Proof Explorer


Theorem lidlssbas

Description: The base set of the restriction of the ring to a (left) ideal is a subset of the base set of the ring. (Contributed by AV, 17-Feb-2020)

Ref Expression
Hypotheses lidlabl.l L = LIdeal R
lidlabl.i I = R 𝑠 U
Assertion lidlssbas U L Base I Base R

Proof

Step Hyp Ref Expression
1 lidlabl.l L = LIdeal R
2 lidlabl.i I = R 𝑠 U
3 eqid Base R = Base R
4 2 3 ressbas U L U Base R = Base I
5 inss2 U Base R Base R
6 4 5 eqsstrrdi U L Base I Base R