Metamath Proof Explorer


Theorem lidlssbas

Description: The base set of the restriction of the ring to a (left) ideal is a subset of the base set of the ring. (Contributed by AV, 17-Feb-2020)

Ref Expression
Hypotheses lidlssbas.l L=LIdealR
lidlssbas.i I=R𝑠U
Assertion lidlssbas ULBaseIBaseR

Proof

Step Hyp Ref Expression
1 lidlssbas.l L=LIdealR
2 lidlssbas.i I=R𝑠U
3 eqid BaseR=BaseR
4 2 3 ressbas ULUBaseR=BaseI
5 inss2 UBaseRBaseR
6 4 5 eqsstrrdi ULBaseIBaseR