Step |
Hyp |
Ref |
Expression |
1 |
|
crngmxidl.i |
⊢ 𝑀 = ( MaxIdeal ‘ 𝑅 ) |
2 |
|
crngmxidl.o |
⊢ 𝑂 = ( oppr ‘ 𝑅 ) |
3 |
1
|
eleq2i |
⊢ ( 𝑚 ∈ 𝑀 ↔ 𝑚 ∈ ( MaxIdeal ‘ 𝑅 ) ) |
4 |
|
eqid |
⊢ ( LIdeal ‘ 𝑅 ) = ( LIdeal ‘ 𝑅 ) |
5 |
4 2
|
crngridl |
⊢ ( 𝑅 ∈ CRing → ( LIdeal ‘ 𝑅 ) = ( LIdeal ‘ 𝑂 ) ) |
6 |
5
|
eleq2d |
⊢ ( 𝑅 ∈ CRing → ( 𝑚 ∈ ( LIdeal ‘ 𝑅 ) ↔ 𝑚 ∈ ( LIdeal ‘ 𝑂 ) ) ) |
7 |
5
|
raleqdv |
⊢ ( 𝑅 ∈ CRing → ( ∀ 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ( 𝑚 ⊆ 𝑗 → ( 𝑗 = 𝑚 ∨ 𝑗 = ( Base ‘ 𝑅 ) ) ) ↔ ∀ 𝑗 ∈ ( LIdeal ‘ 𝑂 ) ( 𝑚 ⊆ 𝑗 → ( 𝑗 = 𝑚 ∨ 𝑗 = ( Base ‘ 𝑅 ) ) ) ) ) |
8 |
6 7
|
3anbi13d |
⊢ ( 𝑅 ∈ CRing → ( ( 𝑚 ∈ ( LIdeal ‘ 𝑅 ) ∧ 𝑚 ≠ ( Base ‘ 𝑅 ) ∧ ∀ 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ( 𝑚 ⊆ 𝑗 → ( 𝑗 = 𝑚 ∨ 𝑗 = ( Base ‘ 𝑅 ) ) ) ) ↔ ( 𝑚 ∈ ( LIdeal ‘ 𝑂 ) ∧ 𝑚 ≠ ( Base ‘ 𝑅 ) ∧ ∀ 𝑗 ∈ ( LIdeal ‘ 𝑂 ) ( 𝑚 ⊆ 𝑗 → ( 𝑗 = 𝑚 ∨ 𝑗 = ( Base ‘ 𝑅 ) ) ) ) ) ) |
9 |
|
crngring |
⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) |
10 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
11 |
10
|
ismxidl |
⊢ ( 𝑅 ∈ Ring → ( 𝑚 ∈ ( MaxIdeal ‘ 𝑅 ) ↔ ( 𝑚 ∈ ( LIdeal ‘ 𝑅 ) ∧ 𝑚 ≠ ( Base ‘ 𝑅 ) ∧ ∀ 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ( 𝑚 ⊆ 𝑗 → ( 𝑗 = 𝑚 ∨ 𝑗 = ( Base ‘ 𝑅 ) ) ) ) ) ) |
12 |
9 11
|
syl |
⊢ ( 𝑅 ∈ CRing → ( 𝑚 ∈ ( MaxIdeal ‘ 𝑅 ) ↔ ( 𝑚 ∈ ( LIdeal ‘ 𝑅 ) ∧ 𝑚 ≠ ( Base ‘ 𝑅 ) ∧ ∀ 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ( 𝑚 ⊆ 𝑗 → ( 𝑗 = 𝑚 ∨ 𝑗 = ( Base ‘ 𝑅 ) ) ) ) ) ) |
13 |
2
|
opprring |
⊢ ( 𝑅 ∈ Ring → 𝑂 ∈ Ring ) |
14 |
2 10
|
opprbas |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑂 ) |
15 |
14
|
ismxidl |
⊢ ( 𝑂 ∈ Ring → ( 𝑚 ∈ ( MaxIdeal ‘ 𝑂 ) ↔ ( 𝑚 ∈ ( LIdeal ‘ 𝑂 ) ∧ 𝑚 ≠ ( Base ‘ 𝑅 ) ∧ ∀ 𝑗 ∈ ( LIdeal ‘ 𝑂 ) ( 𝑚 ⊆ 𝑗 → ( 𝑗 = 𝑚 ∨ 𝑗 = ( Base ‘ 𝑅 ) ) ) ) ) ) |
16 |
9 13 15
|
3syl |
⊢ ( 𝑅 ∈ CRing → ( 𝑚 ∈ ( MaxIdeal ‘ 𝑂 ) ↔ ( 𝑚 ∈ ( LIdeal ‘ 𝑂 ) ∧ 𝑚 ≠ ( Base ‘ 𝑅 ) ∧ ∀ 𝑗 ∈ ( LIdeal ‘ 𝑂 ) ( 𝑚 ⊆ 𝑗 → ( 𝑗 = 𝑚 ∨ 𝑗 = ( Base ‘ 𝑅 ) ) ) ) ) ) |
17 |
8 12 16
|
3bitr4d |
⊢ ( 𝑅 ∈ CRing → ( 𝑚 ∈ ( MaxIdeal ‘ 𝑅 ) ↔ 𝑚 ∈ ( MaxIdeal ‘ 𝑂 ) ) ) |
18 |
3 17
|
bitrid |
⊢ ( 𝑅 ∈ CRing → ( 𝑚 ∈ 𝑀 ↔ 𝑚 ∈ ( MaxIdeal ‘ 𝑂 ) ) ) |
19 |
18
|
eqrdv |
⊢ ( 𝑅 ∈ CRing → 𝑀 = ( MaxIdeal ‘ 𝑂 ) ) |