Metamath Proof Explorer


Theorem crngmxidl

Description: In a commutative ring, maximal ideals of the opposite ring coincide with maximal ideals. (Contributed by Thierry Arnoux, 13-Mar-2025)

Ref Expression
Hypotheses crngmxidl.i No typesetting found for |- M = ( MaxIdeal ` R ) with typecode |-
crngmxidl.o O=opprR
Assertion crngmxidl Could not format assertion : No typesetting found for |- ( R e. CRing -> M = ( MaxIdeal ` O ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 crngmxidl.i Could not format M = ( MaxIdeal ` R ) : No typesetting found for |- M = ( MaxIdeal ` R ) with typecode |-
2 crngmxidl.o O=opprR
3 1 eleq2i Could not format ( m e. M <-> m e. ( MaxIdeal ` R ) ) : No typesetting found for |- ( m e. M <-> m e. ( MaxIdeal ` R ) ) with typecode |-
4 eqid LIdealR=LIdealR
5 4 2 crngridl RCRingLIdealR=LIdealO
6 5 eleq2d RCRingmLIdealRmLIdealO
7 5 raleqdv RCRingjLIdealRmjj=mj=BaseRjLIdealOmjj=mj=BaseR
8 6 7 3anbi13d RCRingmLIdealRmBaseRjLIdealRmjj=mj=BaseRmLIdealOmBaseRjLIdealOmjj=mj=BaseR
9 crngring RCRingRRing
10 eqid BaseR=BaseR
11 10 ismxidl Could not format ( R e. Ring -> ( m e. ( MaxIdeal ` R ) <-> ( m e. ( LIdeal ` R ) /\ m =/= ( Base ` R ) /\ A. j e. ( LIdeal ` R ) ( m C_ j -> ( j = m \/ j = ( Base ` R ) ) ) ) ) ) : No typesetting found for |- ( R e. Ring -> ( m e. ( MaxIdeal ` R ) <-> ( m e. ( LIdeal ` R ) /\ m =/= ( Base ` R ) /\ A. j e. ( LIdeal ` R ) ( m C_ j -> ( j = m \/ j = ( Base ` R ) ) ) ) ) ) with typecode |-
12 9 11 syl Could not format ( R e. CRing -> ( m e. ( MaxIdeal ` R ) <-> ( m e. ( LIdeal ` R ) /\ m =/= ( Base ` R ) /\ A. j e. ( LIdeal ` R ) ( m C_ j -> ( j = m \/ j = ( Base ` R ) ) ) ) ) ) : No typesetting found for |- ( R e. CRing -> ( m e. ( MaxIdeal ` R ) <-> ( m e. ( LIdeal ` R ) /\ m =/= ( Base ` R ) /\ A. j e. ( LIdeal ` R ) ( m C_ j -> ( j = m \/ j = ( Base ` R ) ) ) ) ) ) with typecode |-
13 2 opprring RRingORing
14 2 10 opprbas BaseR=BaseO
15 14 ismxidl Could not format ( O e. Ring -> ( m e. ( MaxIdeal ` O ) <-> ( m e. ( LIdeal ` O ) /\ m =/= ( Base ` R ) /\ A. j e. ( LIdeal ` O ) ( m C_ j -> ( j = m \/ j = ( Base ` R ) ) ) ) ) ) : No typesetting found for |- ( O e. Ring -> ( m e. ( MaxIdeal ` O ) <-> ( m e. ( LIdeal ` O ) /\ m =/= ( Base ` R ) /\ A. j e. ( LIdeal ` O ) ( m C_ j -> ( j = m \/ j = ( Base ` R ) ) ) ) ) ) with typecode |-
16 9 13 15 3syl Could not format ( R e. CRing -> ( m e. ( MaxIdeal ` O ) <-> ( m e. ( LIdeal ` O ) /\ m =/= ( Base ` R ) /\ A. j e. ( LIdeal ` O ) ( m C_ j -> ( j = m \/ j = ( Base ` R ) ) ) ) ) ) : No typesetting found for |- ( R e. CRing -> ( m e. ( MaxIdeal ` O ) <-> ( m e. ( LIdeal ` O ) /\ m =/= ( Base ` R ) /\ A. j e. ( LIdeal ` O ) ( m C_ j -> ( j = m \/ j = ( Base ` R ) ) ) ) ) ) with typecode |-
17 8 12 16 3bitr4d Could not format ( R e. CRing -> ( m e. ( MaxIdeal ` R ) <-> m e. ( MaxIdeal ` O ) ) ) : No typesetting found for |- ( R e. CRing -> ( m e. ( MaxIdeal ` R ) <-> m e. ( MaxIdeal ` O ) ) ) with typecode |-
18 3 17 bitrid Could not format ( R e. CRing -> ( m e. M <-> m e. ( MaxIdeal ` O ) ) ) : No typesetting found for |- ( R e. CRing -> ( m e. M <-> m e. ( MaxIdeal ` O ) ) ) with typecode |-
19 18 eqrdv Could not format ( R e. CRing -> M = ( MaxIdeal ` O ) ) : No typesetting found for |- ( R e. CRing -> M = ( MaxIdeal ` O ) ) with typecode |-