Metamath Proof Explorer


Theorem crngmxidl

Description: In a commutative ring, maximal ideals of the opposite ring coincide with maximal ideals. (Contributed by Thierry Arnoux, 13-Mar-2025)

Ref Expression
Hypotheses crngmxidl.i M = MaxIdeal R
crngmxidl.o O = opp r R
Assertion crngmxidl R CRing M = MaxIdeal O

Proof

Step Hyp Ref Expression
1 crngmxidl.i M = MaxIdeal R
2 crngmxidl.o O = opp r R
3 1 eleq2i m M m MaxIdeal R
4 eqid LIdeal R = LIdeal R
5 4 2 crngridl R CRing LIdeal R = LIdeal O
6 5 eleq2d R CRing m LIdeal R m LIdeal O
7 5 raleqdv R CRing j LIdeal R m j j = m j = Base R j LIdeal O m j j = m j = Base R
8 6 7 3anbi13d R CRing m LIdeal R m Base R j LIdeal R m j j = m j = Base R m LIdeal O m Base R j LIdeal O m j j = m j = Base R
9 crngring R CRing R Ring
10 eqid Base R = Base R
11 10 ismxidl R Ring m MaxIdeal R m LIdeal R m Base R j LIdeal R m j j = m j = Base R
12 9 11 syl R CRing m MaxIdeal R m LIdeal R m Base R j LIdeal R m j j = m j = Base R
13 2 opprring R Ring O Ring
14 2 10 opprbas Base R = Base O
15 14 ismxidl O Ring m MaxIdeal O m LIdeal O m Base R j LIdeal O m j j = m j = Base R
16 9 13 15 3syl R CRing m MaxIdeal O m LIdeal O m Base R j LIdeal O m j j = m j = Base R
17 8 12 16 3bitr4d R CRing m MaxIdeal R m MaxIdeal O
18 3 17 bitrid R CRing m M m MaxIdeal O
19 18 eqrdv R CRing M = MaxIdeal O