Metamath Proof Explorer


Theorem mxidlprm

Description: Every maximal ideal is prime. Statement in Lang p. 92. (Contributed by Thierry Arnoux, 21-Jan-2024)

Ref Expression
Hypothesis mxidlprm.1 × ˙ = LSSum mulGrp R
Assertion mxidlprm R CRing M MaxIdeal R M PrmIdeal R

Proof

Step Hyp Ref Expression
1 mxidlprm.1 × ˙ = LSSum mulGrp R
2 crngring R CRing R Ring
3 2 adantr R CRing M MaxIdeal R R Ring
4 eqid Base R = Base R
5 4 mxidlidl R Ring M MaxIdeal R M LIdeal R
6 2 5 sylan R CRing M MaxIdeal R M LIdeal R
7 4 mxidlnr R Ring M MaxIdeal R M Base R
8 2 7 sylan R CRing M MaxIdeal R M Base R
9 simpllr R CRing M MaxIdeal R x Base R y Base R x R y M ¬ x M u M k Base R × ˙ x 1 R = u + R k a Base R k = a R x 1 R = u + R k
10 simpr R CRing M MaxIdeal R x Base R y Base R x R y M ¬ x M u M k Base R × ˙ x 1 R = u + R k a Base R k = a R x k = a R x
11 10 oveq2d R CRing M MaxIdeal R x Base R y Base R x R y M ¬ x M u M k Base R × ˙ x 1 R = u + R k a Base R k = a R x u + R k = u + R a R x
12 9 11 eqtrd R CRing M MaxIdeal R x Base R y Base R x R y M ¬ x M u M k Base R × ˙ x 1 R = u + R k a Base R k = a R x 1 R = u + R a R x
13 12 oveq1d R CRing M MaxIdeal R x Base R y Base R x R y M ¬ x M u M k Base R × ˙ x 1 R = u + R k a Base R k = a R x 1 R R y = u + R a R x R y
14 3 ad4antr R CRing M MaxIdeal R x Base R y Base R x R y M ¬ x M R Ring
15 14 ad5antr R CRing M MaxIdeal R x Base R y Base R x R y M ¬ x M u M k Base R × ˙ x 1 R = u + R k a Base R k = a R x R Ring
16 simp-8r R CRing M MaxIdeal R x Base R y Base R x R y M ¬ x M u M k Base R × ˙ x 1 R = u + R k a Base R k = a R x y Base R
17 eqid R = R
18 eqid 1 R = 1 R
19 4 17 18 ringlidm R Ring y Base R 1 R R y = y
20 15 16 19 syl2anc R CRing M MaxIdeal R x Base R y Base R x R y M ¬ x M u M k Base R × ˙ x 1 R = u + R k a Base R k = a R x 1 R R y = y
21 eqid LIdeal R = LIdeal R
22 4 21 lidlss M LIdeal R M Base R
23 6 22 syl R CRing M MaxIdeal R M Base R
24 23 ad4antr R CRing M MaxIdeal R x Base R y Base R x R y M ¬ x M M Base R
25 24 ad5antr R CRing M MaxIdeal R x Base R y Base R x R y M ¬ x M u M k Base R × ˙ x 1 R = u + R k a Base R k = a R x M Base R
26 simp-5r R CRing M MaxIdeal R x Base R y Base R x R y M ¬ x M u M k Base R × ˙ x 1 R = u + R k a Base R k = a R x u M
27 25 26 sseldd R CRing M MaxIdeal R x Base R y Base R x R y M ¬ x M u M k Base R × ˙ x 1 R = u + R k a Base R k = a R x u Base R
28 simplr R CRing M MaxIdeal R x Base R y Base R x R y M ¬ x M u M k Base R × ˙ x 1 R = u + R k a Base R k = a R x a Base R
29 simp-4r R CRing M MaxIdeal R x Base R y Base R x R y M ¬ x M x Base R
30 29 ad5antr R CRing M MaxIdeal R x Base R y Base R x R y M ¬ x M u M k Base R × ˙ x 1 R = u + R k a Base R k = a R x x Base R
31 4 17 ringcl R Ring a Base R x Base R a R x Base R
32 15 28 30 31 syl3anc R CRing M MaxIdeal R x Base R y Base R x R y M ¬ x M u M k Base R × ˙ x 1 R = u + R k a Base R k = a R x a R x Base R
33 eqid + R = + R
34 4 33 17 ringdir R Ring u Base R a R x Base R y Base R u + R a R x R y = u R y + R a R x R y
35 15 27 32 16 34 syl13anc R CRing M MaxIdeal R x Base R y Base R x R y M ¬ x M u M k Base R × ˙ x 1 R = u + R k a Base R k = a R x u + R a R x R y = u R y + R a R x R y
36 13 20 35 3eqtr3d R CRing M MaxIdeal R x Base R y Base R x R y M ¬ x M u M k Base R × ˙ x 1 R = u + R k a Base R k = a R x y = u R y + R a R x R y
37 simp-5r R CRing M MaxIdeal R x Base R y Base R x R y M ¬ x M M MaxIdeal R
38 14 37 5 syl2anc R CRing M MaxIdeal R x Base R y Base R x R y M ¬ x M M LIdeal R
39 38 ad5antr R CRing M MaxIdeal R x Base R y Base R x R y M ¬ x M u M k Base R × ˙ x 1 R = u + R k a Base R k = a R x M LIdeal R
40 simp-10l R CRing M MaxIdeal R x Base R y Base R x R y M ¬ x M u M k Base R × ˙ x 1 R = u + R k a Base R k = a R x R CRing
41 4 17 crngcom R CRing y Base R u Base R y R u = u R y
42 40 16 27 41 syl3anc R CRing M MaxIdeal R x Base R y Base R x R y M ¬ x M u M k Base R × ˙ x 1 R = u + R k a Base R k = a R x y R u = u R y
43 21 4 17 lidlmcl R Ring M LIdeal R y Base R u M y R u M
44 15 39 16 26 43 syl22anc R CRing M MaxIdeal R x Base R y Base R x R y M ¬ x M u M k Base R × ˙ x 1 R = u + R k a Base R k = a R x y R u M
45 42 44 eqeltrrd R CRing M MaxIdeal R x Base R y Base R x R y M ¬ x M u M k Base R × ˙ x 1 R = u + R k a Base R k = a R x u R y M
46 4 17 ringass R Ring a Base R x Base R y Base R a R x R y = a R x R y
47 15 28 30 16 46 syl13anc R CRing M MaxIdeal R x Base R y Base R x R y M ¬ x M u M k Base R × ˙ x 1 R = u + R k a Base R k = a R x a R x R y = a R x R y
48 simp-7r R CRing M MaxIdeal R x Base R y Base R x R y M ¬ x M u M k Base R × ˙ x 1 R = u + R k a Base R k = a R x x R y M
49 21 4 17 lidlmcl R Ring M LIdeal R a Base R x R y M a R x R y M
50 15 39 28 48 49 syl22anc R CRing M MaxIdeal R x Base R y Base R x R y M ¬ x M u M k Base R × ˙ x 1 R = u + R k a Base R k = a R x a R x R y M
51 47 50 eqeltrd R CRing M MaxIdeal R x Base R y Base R x R y M ¬ x M u M k Base R × ˙ x 1 R = u + R k a Base R k = a R x a R x R y M
52 21 33 lidlacl R Ring M LIdeal R u R y M a R x R y M u R y + R a R x R y M
53 15 39 45 51 52 syl22anc R CRing M MaxIdeal R x Base R y Base R x R y M ¬ x M u M k Base R × ˙ x 1 R = u + R k a Base R k = a R x u R y + R a R x R y M
54 36 53 eqeltrd R CRing M MaxIdeal R x Base R y Base R x R y M ¬ x M u M k Base R × ˙ x 1 R = u + R k a Base R k = a R x y M
55 simplr R CRing M MaxIdeal R x Base R y Base R x R y M ¬ x M u M k Base R × ˙ x 1 R = u + R k k Base R × ˙ x
56 eqid mulGrp R = mulGrp R
57 56 4 mgpbas Base R = Base mulGrp R
58 56 17 mgpplusg R = + mulGrp R
59 fvexd R CRing M MaxIdeal R x Base R y Base R x R y M ¬ x M mulGrp R V
60 ssidd R CRing M MaxIdeal R x Base R y Base R x R y M ¬ x M Base R Base R
61 57 58 1 59 60 29 elgrplsmsn R CRing M MaxIdeal R x Base R y Base R x R y M ¬ x M k Base R × ˙ x a Base R k = a R x
62 61 ad3antrrr R CRing M MaxIdeal R x Base R y Base R x R y M ¬ x M u M k Base R × ˙ x 1 R = u + R k k Base R × ˙ x a Base R k = a R x
63 55 62 mpbid R CRing M MaxIdeal R x Base R y Base R x R y M ¬ x M u M k Base R × ˙ x 1 R = u + R k a Base R k = a R x
64 54 63 r19.29a R CRing M MaxIdeal R x Base R y Base R x R y M ¬ x M u M k Base R × ˙ x 1 R = u + R k y M
65 4 18 ringidcl R Ring 1 R Base R
66 14 65 syl R CRing M MaxIdeal R x Base R y Base R x R y M ¬ x M 1 R Base R
67 eqid LSSum R = LSSum R
68 eqid RSpan R = RSpan R
69 eqid LPIdeal R = LPIdeal R
70 69 21 lpiss R Ring LPIdeal R LIdeal R
71 14 70 syl R CRing M MaxIdeal R x Base R y Base R x R y M ¬ x M LPIdeal R LIdeal R
72 4 56 1 68 14 29 lsmsnidl R CRing M MaxIdeal R x Base R y Base R x R y M ¬ x M Base R × ˙ x LPIdeal R
73 71 72 sseldd R CRing M MaxIdeal R x Base R y Base R x R y M ¬ x M Base R × ˙ x LIdeal R
74 4 67 68 14 38 73 lsmidl R CRing M MaxIdeal R x Base R y Base R x R y M ¬ x M M LSSum R Base R × ˙ x LIdeal R
75 rlmlmod R Ring ringLMod R LMod
76 14 75 syl R CRing M MaxIdeal R x Base R y Base R x R y M ¬ x M ringLMod R LMod
77 rlmbas Base R = Base ringLMod R
78 rspval RSpan R = LSpan ringLMod R
79 77 78 lspssid ringLMod R LMod M Base R M RSpan R M
80 76 24 79 syl2anc R CRing M MaxIdeal R x Base R y Base R x R y M ¬ x M M RSpan R M
81 29 snssd R CRing M MaxIdeal R x Base R y Base R x R y M ¬ x M x Base R
82 4 56 1 14 60 81 ringlsmss R CRing M MaxIdeal R x Base R y Base R x R y M ¬ x M Base R × ˙ x Base R
83 24 82 unssd R CRing M MaxIdeal R x Base R y Base R x R y M ¬ x M M Base R × ˙ x Base R
84 ssun1 M M Base R × ˙ x
85 84 a1i R CRing M MaxIdeal R x Base R y Base R x R y M ¬ x M M M Base R × ˙ x
86 77 78 lspss ringLMod R LMod M Base R × ˙ x Base R M M Base R × ˙ x RSpan R M RSpan R M Base R × ˙ x
87 76 83 85 86 syl3anc R CRing M MaxIdeal R x Base R y Base R x R y M ¬ x M RSpan R M RSpan R M Base R × ˙ x
88 80 87 sstrd R CRing M MaxIdeal R x Base R y Base R x R y M ¬ x M M RSpan R M Base R × ˙ x
89 4 67 68 14 38 73 lsmidllsp R CRing M MaxIdeal R x Base R y Base R x R y M ¬ x M M LSSum R Base R × ˙ x = RSpan R M Base R × ˙ x
90 88 89 sseqtrrd R CRing M MaxIdeal R x Base R y Base R x R y M ¬ x M M M LSSum R Base R × ˙ x
91 4 mxidlmax R Ring M MaxIdeal R M LSSum R Base R × ˙ x LIdeal R M M LSSum R Base R × ˙ x M LSSum R Base R × ˙ x = M M LSSum R Base R × ˙ x = Base R
92 14 37 74 90 91 syl22anc R CRing M MaxIdeal R x Base R y Base R x R y M ¬ x M M LSSum R Base R × ˙ x = M M LSSum R Base R × ˙ x = Base R
93 eqid 0 R = 0 R
94 21 93 lidl0cl R Ring M LIdeal R 0 R M
95 14 38 94 syl2anc R CRing M MaxIdeal R x Base R y Base R x R y M ¬ x M 0 R M
96 oveq1 a = 0 R a + R b = 0 R + R b
97 96 eqeq2d a = 0 R x = a + R b x = 0 R + R b
98 97 rexbidv a = 0 R b Base R × ˙ x x = a + R b b Base R × ˙ x x = 0 R + R b
99 98 adantl R CRing M MaxIdeal R x Base R y Base R x R y M ¬ x M a = 0 R b Base R × ˙ x x = a + R b b Base R × ˙ x x = 0 R + R b
100 oveq1 a = 1 R a R x = 1 R R x
101 100 eqeq2d a = 1 R x = a R x x = 1 R R x
102 101 adantl R CRing M MaxIdeal R x Base R y Base R x R y M ¬ x M a = 1 R x = a R x x = 1 R R x
103 4 17 18 ringlidm R Ring x Base R 1 R R x = x
104 14 29 103 syl2anc R CRing M MaxIdeal R x Base R y Base R x R y M ¬ x M 1 R R x = x
105 104 eqcomd R CRing M MaxIdeal R x Base R y Base R x R y M ¬ x M x = 1 R R x
106 66 102 105 rspcedvd R CRing M MaxIdeal R x Base R y Base R x R y M ¬ x M a Base R x = a R x
107 57 58 1 59 60 29 elgrplsmsn R CRing M MaxIdeal R x Base R y Base R x R y M ¬ x M x Base R × ˙ x a Base R x = a R x
108 106 107 mpbird R CRing M MaxIdeal R x Base R y Base R x R y M ¬ x M x Base R × ˙ x
109 oveq2 b = x 0 R + R b = 0 R + R x
110 109 eqeq2d b = x x = 0 R + R b x = 0 R + R x
111 110 adantl R CRing M MaxIdeal R x Base R y Base R x R y M ¬ x M b = x x = 0 R + R b x = 0 R + R x
112 ringgrp R Ring R Grp
113 14 112 syl R CRing M MaxIdeal R x Base R y Base R x R y M ¬ x M R Grp
114 4 33 93 grplid R Grp x Base R 0 R + R x = x
115 113 29 114 syl2anc R CRing M MaxIdeal R x Base R y Base R x R y M ¬ x M 0 R + R x = x
116 115 eqcomd R CRing M MaxIdeal R x Base R y Base R x R y M ¬ x M x = 0 R + R x
117 108 111 116 rspcedvd R CRing M MaxIdeal R x Base R y Base R x R y M ¬ x M b Base R × ˙ x x = 0 R + R b
118 95 99 117 rspcedvd R CRing M MaxIdeal R x Base R y Base R x R y M ¬ x M a M b Base R × ˙ x x = a + R b
119 simp-5l R CRing M MaxIdeal R x Base R y Base R x R y M ¬ x M R CRing
120 4 33 67 lsmelvalx R CRing M Base R Base R × ˙ x Base R x M LSSum R Base R × ˙ x a M b Base R × ˙ x x = a + R b
121 119 24 82 120 syl3anc R CRing M MaxIdeal R x Base R y Base R x R y M ¬ x M x M LSSum R Base R × ˙ x a M b Base R × ˙ x x = a + R b
122 118 121 mpbird R CRing M MaxIdeal R x Base R y Base R x R y M ¬ x M x M LSSum R Base R × ˙ x
123 simpr R CRing M MaxIdeal R x Base R y Base R x R y M ¬ x M ¬ x M
124 nelne1 x M LSSum R Base R × ˙ x ¬ x M M LSSum R Base R × ˙ x M
125 122 123 124 syl2anc R CRing M MaxIdeal R x Base R y Base R x R y M ¬ x M M LSSum R Base R × ˙ x M
126 125 neneqd R CRing M MaxIdeal R x Base R y Base R x R y M ¬ x M ¬ M LSSum R Base R × ˙ x = M
127 92 126 orcnd R CRing M MaxIdeal R x Base R y Base R x R y M ¬ x M M LSSum R Base R × ˙ x = Base R
128 66 127 eleqtrrd R CRing M MaxIdeal R x Base R y Base R x R y M ¬ x M 1 R M LSSum R Base R × ˙ x
129 4 33 67 lsmelvalx R CRing M Base R Base R × ˙ x Base R 1 R M LSSum R Base R × ˙ x u M k Base R × ˙ x 1 R = u + R k
130 119 24 82 129 syl3anc R CRing M MaxIdeal R x Base R y Base R x R y M ¬ x M 1 R M LSSum R Base R × ˙ x u M k Base R × ˙ x 1 R = u + R k
131 128 130 mpbid R CRing M MaxIdeal R x Base R y Base R x R y M ¬ x M u M k Base R × ˙ x 1 R = u + R k
132 64 131 r19.29vva R CRing M MaxIdeal R x Base R y Base R x R y M ¬ x M y M
133 132 ex R CRing M MaxIdeal R x Base R y Base R x R y M ¬ x M y M
134 133 orrd R CRing M MaxIdeal R x Base R y Base R x R y M x M y M
135 134 ex R CRing M MaxIdeal R x Base R y Base R x R y M x M y M
136 135 anasss R CRing M MaxIdeal R x Base R y Base R x R y M x M y M
137 136 ralrimivva R CRing M MaxIdeal R x Base R y Base R x R y M x M y M
138 4 17 prmidl2 R Ring M LIdeal R M Base R x Base R y Base R x R y M x M y M M PrmIdeal R
139 3 6 8 137 138 syl22anc R CRing M MaxIdeal R M PrmIdeal R