Metamath Proof Explorer


Theorem mxidlmax

Description: A maximal ideal is a maximal proper ideal. (Contributed by Jeff Madsen, 16-Jun-2011) (Revised by Thierry Arnoux, 19-Jan-2024)

Ref Expression
Hypothesis mxidlval.1 B = Base R
Assertion mxidlmax Could not format assertion : No typesetting found for |- ( ( ( R e. Ring /\ M e. ( MaxIdeal ` R ) ) /\ ( I e. ( LIdeal ` R ) /\ M C_ I ) ) -> ( I = M \/ I = B ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 mxidlval.1 B = Base R
2 sseq2 j = I M j M I
3 eqeq1 j = I j = M I = M
4 eqeq1 j = I j = B I = B
5 3 4 orbi12d j = I j = M j = B I = M I = B
6 2 5 imbi12d j = I M j j = M j = B M I I = M I = B
7 1 ismxidl Could not format ( R e. Ring -> ( M e. ( MaxIdeal ` R ) <-> ( M e. ( LIdeal ` R ) /\ M =/= B /\ A. j e. ( LIdeal ` R ) ( M C_ j -> ( j = M \/ j = B ) ) ) ) ) : No typesetting found for |- ( R e. Ring -> ( M e. ( MaxIdeal ` R ) <-> ( M e. ( LIdeal ` R ) /\ M =/= B /\ A. j e. ( LIdeal ` R ) ( M C_ j -> ( j = M \/ j = B ) ) ) ) ) with typecode |-
8 7 biimpa Could not format ( ( R e. Ring /\ M e. ( MaxIdeal ` R ) ) -> ( M e. ( LIdeal ` R ) /\ M =/= B /\ A. j e. ( LIdeal ` R ) ( M C_ j -> ( j = M \/ j = B ) ) ) ) : No typesetting found for |- ( ( R e. Ring /\ M e. ( MaxIdeal ` R ) ) -> ( M e. ( LIdeal ` R ) /\ M =/= B /\ A. j e. ( LIdeal ` R ) ( M C_ j -> ( j = M \/ j = B ) ) ) ) with typecode |-
9 8 simp3d Could not format ( ( R e. Ring /\ M e. ( MaxIdeal ` R ) ) -> A. j e. ( LIdeal ` R ) ( M C_ j -> ( j = M \/ j = B ) ) ) : No typesetting found for |- ( ( R e. Ring /\ M e. ( MaxIdeal ` R ) ) -> A. j e. ( LIdeal ` R ) ( M C_ j -> ( j = M \/ j = B ) ) ) with typecode |-
10 9 adantr Could not format ( ( ( R e. Ring /\ M e. ( MaxIdeal ` R ) ) /\ I e. ( LIdeal ` R ) ) -> A. j e. ( LIdeal ` R ) ( M C_ j -> ( j = M \/ j = B ) ) ) : No typesetting found for |- ( ( ( R e. Ring /\ M e. ( MaxIdeal ` R ) ) /\ I e. ( LIdeal ` R ) ) -> A. j e. ( LIdeal ` R ) ( M C_ j -> ( j = M \/ j = B ) ) ) with typecode |-
11 simpr Could not format ( ( ( R e. Ring /\ M e. ( MaxIdeal ` R ) ) /\ I e. ( LIdeal ` R ) ) -> I e. ( LIdeal ` R ) ) : No typesetting found for |- ( ( ( R e. Ring /\ M e. ( MaxIdeal ` R ) ) /\ I e. ( LIdeal ` R ) ) -> I e. ( LIdeal ` R ) ) with typecode |-
12 6 10 11 rspcdva Could not format ( ( ( R e. Ring /\ M e. ( MaxIdeal ` R ) ) /\ I e. ( LIdeal ` R ) ) -> ( M C_ I -> ( I = M \/ I = B ) ) ) : No typesetting found for |- ( ( ( R e. Ring /\ M e. ( MaxIdeal ` R ) ) /\ I e. ( LIdeal ` R ) ) -> ( M C_ I -> ( I = M \/ I = B ) ) ) with typecode |-
13 12 impr Could not format ( ( ( R e. Ring /\ M e. ( MaxIdeal ` R ) ) /\ ( I e. ( LIdeal ` R ) /\ M C_ I ) ) -> ( I = M \/ I = B ) ) : No typesetting found for |- ( ( ( R e. Ring /\ M e. ( MaxIdeal ` R ) ) /\ ( I e. ( LIdeal ` R ) /\ M C_ I ) ) -> ( I = M \/ I = B ) ) with typecode |-