Metamath Proof Explorer


Theorem mxidlmax

Description: A maximal ideal is a maximal proper ideal. (Contributed by Jeff Madsen, 16-Jun-2011) (Revised by Thierry Arnoux, 19-Jan-2024)

Ref Expression
Hypothesis mxidlval.1 B = Base R
Assertion mxidlmax R Ring M MaxIdeal R I LIdeal R M I I = M I = B

Proof

Step Hyp Ref Expression
1 mxidlval.1 B = Base R
2 sseq2 j = I M j M I
3 eqeq1 j = I j = M I = M
4 eqeq1 j = I j = B I = B
5 3 4 orbi12d j = I j = M j = B I = M I = B
6 2 5 imbi12d j = I M j j = M j = B M I I = M I = B
7 1 ismxidl R Ring M MaxIdeal R M LIdeal R M B j LIdeal R M j j = M j = B
8 7 biimpa R Ring M MaxIdeal R M LIdeal R M B j LIdeal R M j j = M j = B
9 8 simp3d R Ring M MaxIdeal R j LIdeal R M j j = M j = B
10 9 adantr R Ring M MaxIdeal R I LIdeal R j LIdeal R M j j = M j = B
11 simpr R Ring M MaxIdeal R I LIdeal R I LIdeal R
12 6 10 11 rspcdva R Ring M MaxIdeal R I LIdeal R M I I = M I = B
13 12 impr R Ring M MaxIdeal R I LIdeal R M I I = M I = B