Step |
Hyp |
Ref |
Expression |
1 |
|
mxidlval.1 |
|- B = ( Base ` R ) |
2 |
|
sseq2 |
|- ( j = I -> ( M C_ j <-> M C_ I ) ) |
3 |
|
eqeq1 |
|- ( j = I -> ( j = M <-> I = M ) ) |
4 |
|
eqeq1 |
|- ( j = I -> ( j = B <-> I = B ) ) |
5 |
3 4
|
orbi12d |
|- ( j = I -> ( ( j = M \/ j = B ) <-> ( I = M \/ I = B ) ) ) |
6 |
2 5
|
imbi12d |
|- ( j = I -> ( ( M C_ j -> ( j = M \/ j = B ) ) <-> ( M C_ I -> ( I = M \/ I = B ) ) ) ) |
7 |
1
|
ismxidl |
|- ( R e. Ring -> ( M e. ( MaxIdeal ` R ) <-> ( M e. ( LIdeal ` R ) /\ M =/= B /\ A. j e. ( LIdeal ` R ) ( M C_ j -> ( j = M \/ j = B ) ) ) ) ) |
8 |
7
|
biimpa |
|- ( ( R e. Ring /\ M e. ( MaxIdeal ` R ) ) -> ( M e. ( LIdeal ` R ) /\ M =/= B /\ A. j e. ( LIdeal ` R ) ( M C_ j -> ( j = M \/ j = B ) ) ) ) |
9 |
8
|
simp3d |
|- ( ( R e. Ring /\ M e. ( MaxIdeal ` R ) ) -> A. j e. ( LIdeal ` R ) ( M C_ j -> ( j = M \/ j = B ) ) ) |
10 |
9
|
adantr |
|- ( ( ( R e. Ring /\ M e. ( MaxIdeal ` R ) ) /\ I e. ( LIdeal ` R ) ) -> A. j e. ( LIdeal ` R ) ( M C_ j -> ( j = M \/ j = B ) ) ) |
11 |
|
simpr |
|- ( ( ( R e. Ring /\ M e. ( MaxIdeal ` R ) ) /\ I e. ( LIdeal ` R ) ) -> I e. ( LIdeal ` R ) ) |
12 |
6 10 11
|
rspcdva |
|- ( ( ( R e. Ring /\ M e. ( MaxIdeal ` R ) ) /\ I e. ( LIdeal ` R ) ) -> ( M C_ I -> ( I = M \/ I = B ) ) ) |
13 |
12
|
impr |
|- ( ( ( R e. Ring /\ M e. ( MaxIdeal ` R ) ) /\ ( I e. ( LIdeal ` R ) /\ M C_ I ) ) -> ( I = M \/ I = B ) ) |