| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mxidlval.1 |
|- B = ( Base ` R ) |
| 2 |
|
mxidln1.1 |
|- .1. = ( 1r ` R ) |
| 3 |
1
|
mxidlnr |
|- ( ( R e. Ring /\ M e. ( MaxIdeal ` R ) ) -> M =/= B ) |
| 4 |
1
|
mxidlidl |
|- ( ( R e. Ring /\ M e. ( MaxIdeal ` R ) ) -> M e. ( LIdeal ` R ) ) |
| 5 |
|
eqid |
|- ( LIdeal ` R ) = ( LIdeal ` R ) |
| 6 |
5 1 2
|
lidl1el |
|- ( ( R e. Ring /\ M e. ( LIdeal ` R ) ) -> ( .1. e. M <-> M = B ) ) |
| 7 |
4 6
|
syldan |
|- ( ( R e. Ring /\ M e. ( MaxIdeal ` R ) ) -> ( .1. e. M <-> M = B ) ) |
| 8 |
7
|
necon3bbid |
|- ( ( R e. Ring /\ M e. ( MaxIdeal ` R ) ) -> ( -. .1. e. M <-> M =/= B ) ) |
| 9 |
3 8
|
mpbird |
|- ( ( R e. Ring /\ M e. ( MaxIdeal ` R ) ) -> -. .1. e. M ) |