Metamath Proof Explorer


Theorem mxidln1

Description: One is not contained in any maximal ideal. (Contributed by Jeff Madsen, 17-Jun-2011) (Revised by Thierry Arnoux, 19-Jan-2024)

Ref Expression
Hypotheses mxidlval.1 B = Base R
mxidln1.1 1 ˙ = 1 R
Assertion mxidln1 R Ring M MaxIdeal R ¬ 1 ˙ M

Proof

Step Hyp Ref Expression
1 mxidlval.1 B = Base R
2 mxidln1.1 1 ˙ = 1 R
3 1 mxidlnr R Ring M MaxIdeal R M B
4 1 mxidlidl R Ring M MaxIdeal R M LIdeal R
5 eqid LIdeal R = LIdeal R
6 5 1 2 lidl1el R Ring M LIdeal R 1 ˙ M M = B
7 4 6 syldan R Ring M MaxIdeal R 1 ˙ M M = B
8 7 necon3bbid R Ring M MaxIdeal R ¬ 1 ˙ M M B
9 3 8 mpbird R Ring M MaxIdeal R ¬ 1 ˙ M