Metamath Proof Explorer


Theorem mxidlnr

Description: A maximal ideal is proper. (Contributed by Jeff Madsen, 16-Jun-2011) (Revised by Thierry Arnoux, 19-Jan-2024)

Ref Expression
Hypothesis mxidlval.1 B = Base R
Assertion mxidlnr R Ring M MaxIdeal R M B

Proof

Step Hyp Ref Expression
1 mxidlval.1 B = Base R
2 1 ismxidl R Ring M MaxIdeal R M LIdeal R M B j LIdeal R M j j = M j = B
3 2 biimpa R Ring M MaxIdeal R M LIdeal R M B j LIdeal R M j j = M j = B
4 3 simp2d R Ring M MaxIdeal R M B