Description: A maximal ideal is proper. (Contributed by Jeff Madsen, 16-Jun-2011) (Revised by Thierry Arnoux, 19-Jan-2024)
Ref | Expression | ||
---|---|---|---|
Hypothesis | mxidlval.1 | ||
Assertion | mxidlnr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mxidlval.1 | ||
2 | 1 | ismxidl | |
3 | 2 | biimpa | |
4 | 3 | simp2d |