Metamath Proof Explorer


Theorem mxidlnzr

Description: A ring with a maximal ideal is a nonzero ring. (Contributed by Jeff Madsen, 17-Jun-2011) (Revised by Thierry Arnoux, 19-Jan-2024)

Ref Expression
Hypothesis mxidlval.1 B = Base R
Assertion mxidlnzr R Ring M MaxIdeal R R NzRing

Proof

Step Hyp Ref Expression
1 mxidlval.1 B = Base R
2 1 mxidlidl R Ring M MaxIdeal R M LIdeal R
3 eqid LIdeal R = LIdeal R
4 eqid 0 R = 0 R
5 3 4 lidl0cl R Ring M LIdeal R 0 R M
6 2 5 syldan R Ring M MaxIdeal R 0 R M
7 eqid 1 R = 1 R
8 1 7 mxidln1 R Ring M MaxIdeal R ¬ 1 R M
9 nelne2 0 R M ¬ 1 R M 0 R 1 R
10 6 8 9 syl2anc R Ring M MaxIdeal R 0 R 1 R
11 10 necomd R Ring M MaxIdeal R 1 R 0 R
12 7 4 isnzr R NzRing R Ring 1 R 0 R
13 12 biimpri R Ring 1 R 0 R R NzRing
14 11 13 syldan R Ring M MaxIdeal R R NzRing