Step |
Hyp |
Ref |
Expression |
1 |
|
mxidlval.1 |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
sseq2 |
⊢ ( 𝑗 = 𝐼 → ( 𝑀 ⊆ 𝑗 ↔ 𝑀 ⊆ 𝐼 ) ) |
3 |
|
eqeq1 |
⊢ ( 𝑗 = 𝐼 → ( 𝑗 = 𝑀 ↔ 𝐼 = 𝑀 ) ) |
4 |
|
eqeq1 |
⊢ ( 𝑗 = 𝐼 → ( 𝑗 = 𝐵 ↔ 𝐼 = 𝐵 ) ) |
5 |
3 4
|
orbi12d |
⊢ ( 𝑗 = 𝐼 → ( ( 𝑗 = 𝑀 ∨ 𝑗 = 𝐵 ) ↔ ( 𝐼 = 𝑀 ∨ 𝐼 = 𝐵 ) ) ) |
6 |
2 5
|
imbi12d |
⊢ ( 𝑗 = 𝐼 → ( ( 𝑀 ⊆ 𝑗 → ( 𝑗 = 𝑀 ∨ 𝑗 = 𝐵 ) ) ↔ ( 𝑀 ⊆ 𝐼 → ( 𝐼 = 𝑀 ∨ 𝐼 = 𝐵 ) ) ) ) |
7 |
1
|
ismxidl |
⊢ ( 𝑅 ∈ Ring → ( 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ↔ ( 𝑀 ∈ ( LIdeal ‘ 𝑅 ) ∧ 𝑀 ≠ 𝐵 ∧ ∀ 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ( 𝑀 ⊆ 𝑗 → ( 𝑗 = 𝑀 ∨ 𝑗 = 𝐵 ) ) ) ) ) |
8 |
7
|
biimpa |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) → ( 𝑀 ∈ ( LIdeal ‘ 𝑅 ) ∧ 𝑀 ≠ 𝐵 ∧ ∀ 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ( 𝑀 ⊆ 𝑗 → ( 𝑗 = 𝑀 ∨ 𝑗 = 𝐵 ) ) ) ) |
9 |
8
|
simp3d |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) → ∀ 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ( 𝑀 ⊆ 𝑗 → ( 𝑗 = 𝑀 ∨ 𝑗 = 𝐵 ) ) ) |
10 |
9
|
adantr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) → ∀ 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ( 𝑀 ⊆ 𝑗 → ( 𝑗 = 𝑀 ∨ 𝑗 = 𝐵 ) ) ) |
11 |
|
simpr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) → 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) |
12 |
6 10 11
|
rspcdva |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) → ( 𝑀 ⊆ 𝐼 → ( 𝐼 = 𝑀 ∨ 𝐼 = 𝐵 ) ) ) |
13 |
12
|
impr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ ( 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ∧ 𝑀 ⊆ 𝐼 ) ) → ( 𝐼 = 𝑀 ∨ 𝐼 = 𝐵 ) ) |