Step |
Hyp |
Ref |
Expression |
1 |
|
mxidlirredi.b |
|
2 |
|
mxidlirredi.k |
|
3 |
|
mxidlirredi.0 |
|
4 |
|
mxidlirredi.m |
|
5 |
|
mxidlirredi.r |
|
6 |
|
mxidlirredi.x |
|
7 |
|
mxidlirredi.y |
|
8 |
|
mxidlirredi.1 |
|
9 |
5
|
idomringd |
|
10 |
1
|
mxidlnr |
|
11 |
9 8 10
|
syl2anc |
|
12 |
|
eqid |
|
13 |
12 2 4 1 6 5
|
unitpidl1 |
|
14 |
13
|
necon3abid |
|
15 |
11 14
|
mpbid |
|
16 |
6 15
|
eldifd |
|
17 |
9
|
ad3antrrr |
|
18 |
8
|
ad3antrrr |
|
19 |
|
simplr |
|
20 |
19
|
eldifad |
|
21 |
20
|
snssd |
|
22 |
|
eqid |
|
23 |
2 1 22
|
rspcl |
|
24 |
17 21 23
|
syl2anc |
|
25 |
9
|
ad4antr |
|
26 |
25
|
ad2antrr |
|
27 |
|
simp-5r |
|
28 |
27
|
eldifad |
|
29 |
|
eqid |
|
30 |
|
simplr |
|
31 |
|
simp-6r |
|
32 |
31
|
eldifad |
|
33 |
1 29 26 30 32
|
ringcld |
|
34 |
|
oveq1 |
|
35 |
34
|
eqeq2d |
|
36 |
35
|
adantl |
|
37 |
|
simp-4r |
|
38 |
37
|
oveq2d |
|
39 |
1 29 26 30 32 28
|
ringassd |
|
40 |
|
simpr |
|
41 |
38 39 40
|
3eqtr4rd |
|
42 |
33 36 41
|
rspcedvd |
|
43 |
1 29 2
|
elrspsn |
|
44 |
43
|
biimpar |
|
45 |
26 28 42 44
|
syl21anc |
|
46 |
6
|
ad4antr |
|
47 |
|
simpr |
|
48 |
47 4
|
eleqtrdi |
|
49 |
1 29 2
|
elrspsn |
|
50 |
49
|
biimpa |
|
51 |
25 46 48 50
|
syl21anc |
|
52 |
45 51
|
r19.29a |
|
53 |
52
|
ex |
|
54 |
53
|
ssrdv |
|
55 |
2 1
|
rspssid |
|
56 |
|
vex |
|
57 |
56
|
snss |
|
58 |
55 57
|
sylibr |
|
59 |
17 21 58
|
syl2anc |
|
60 |
|
df-idom |
|
61 |
5 60
|
eleqtrdi |
|
62 |
61
|
elin1d |
|
63 |
62
|
ad6antr |
|
64 |
|
simplr |
|
65 |
|
simp-6r |
|
66 |
65
|
eldifad |
|
67 |
17
|
adantr |
|
68 |
67
|
ad2antrr |
|
69 |
1 29 68 64 66
|
ringcld |
|
70 |
|
eqid |
|
71 |
1 70
|
ringidcl |
|
72 |
9 71
|
syl |
|
73 |
72
|
ad6antr |
|
74 |
20
|
ad3antrrr |
|
75 |
|
simpr |
|
76 |
75
|
oveq2d |
|
77 |
|
simp-5r |
|
78 |
67
|
ad3antrrr |
|
79 |
66
|
adantr |
|
80 |
1 29 3
|
ringrz |
|
81 |
78 79 80
|
syl2anc |
|
82 |
76 77 81
|
3eqtr3d |
|
83 |
7
|
neneqd |
|
84 |
83
|
ad7antr |
|
85 |
82 84
|
pm2.65da |
|
86 |
85
|
neqned |
|
87 |
|
eldifsn |
|
88 |
74 86 87
|
sylanbrc |
|
89 |
5
|
ad6antr |
|
90 |
1 29 70 68 74
|
ringlidmd |
|
91 |
|
simpr |
|
92 |
1 29 68 64 66 74
|
ringassd |
|
93 |
|
simp-4r |
|
94 |
93
|
oveq2d |
|
95 |
92 94
|
eqtr2d |
|
96 |
90 91 95
|
3eqtrrd |
|
97 |
1 3 29 69 73 88 89 96
|
idomrcan |
|
98 |
12 70
|
1unit |
|
99 |
9 98
|
syl |
|
100 |
99
|
ad6antr |
|
101 |
97 100
|
eqeltrd |
|
102 |
12 29 1
|
unitmulclb |
|
103 |
102
|
simplbda |
|
104 |
63 64 66 101 103
|
syl31anc |
|
105 |
6
|
ad4antr |
|
106 |
|
simpr |
|
107 |
106 4
|
eleqtrdi |
|
108 |
1 29 2
|
elrspsn |
|
109 |
108
|
biimpa |
|
110 |
67 105 107 109
|
syl21anc |
|
111 |
104 110
|
r19.29a |
|
112 |
|
simp-4r |
|
113 |
112
|
eldifbd |
|
114 |
111 113
|
pm2.65da |
|
115 |
59 114
|
eldifd |
|
116 |
1 17 18 24 54 115
|
mxidlmaxv |
|
117 |
|
eqid |
|
118 |
5
|
ad3antrrr |
|
119 |
12 2 117 1 20 118
|
unitpidl1 |
|
120 |
116 119
|
mpbid |
|
121 |
19
|
eldifbd |
|
122 |
120 121
|
pm2.65da |
|
123 |
122
|
anasss |
|
124 |
123
|
neqned |
|
125 |
124
|
ralrimivva |
|
126 |
|
eqid |
|
127 |
|
eqid |
|
128 |
1 12 126 127 29
|
isirred |
|
129 |
16 125 128
|
sylanbrc |
|