| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mxidlirredi.b |
|
| 2 |
|
mxidlirredi.k |
|
| 3 |
|
mxidlirredi.0 |
|
| 4 |
|
mxidlirredi.m |
|
| 5 |
|
mxidlirredi.r |
|
| 6 |
|
mxidlirredi.x |
|
| 7 |
|
mxidlirredi.y |
|
| 8 |
|
mxidlirredi.1 |
|
| 9 |
5
|
idomringd |
|
| 10 |
1
|
mxidlnr |
|
| 11 |
9 8 10
|
syl2anc |
|
| 12 |
|
eqid |
|
| 13 |
12 2 4 1 6 5
|
unitpidl1 |
|
| 14 |
13
|
necon3abid |
|
| 15 |
11 14
|
mpbid |
|
| 16 |
6 15
|
eldifd |
|
| 17 |
9
|
ad3antrrr |
|
| 18 |
8
|
ad3antrrr |
|
| 19 |
|
simplr |
|
| 20 |
19
|
eldifad |
|
| 21 |
20
|
snssd |
|
| 22 |
|
eqid |
|
| 23 |
2 1 22
|
rspcl |
|
| 24 |
17 21 23
|
syl2anc |
|
| 25 |
9
|
ad4antr |
|
| 26 |
25
|
ad2antrr |
|
| 27 |
|
simp-5r |
|
| 28 |
27
|
eldifad |
|
| 29 |
|
eqid |
|
| 30 |
|
simplr |
|
| 31 |
|
simp-6r |
|
| 32 |
31
|
eldifad |
|
| 33 |
1 29 26 30 32
|
ringcld |
|
| 34 |
|
oveq1 |
|
| 35 |
34
|
eqeq2d |
|
| 36 |
35
|
adantl |
|
| 37 |
|
simp-4r |
|
| 38 |
37
|
oveq2d |
|
| 39 |
1 29 26 30 32 28
|
ringassd |
|
| 40 |
|
simpr |
|
| 41 |
38 39 40
|
3eqtr4rd |
|
| 42 |
33 36 41
|
rspcedvd |
|
| 43 |
1 29 2
|
elrspsn |
|
| 44 |
43
|
biimpar |
|
| 45 |
26 28 42 44
|
syl21anc |
|
| 46 |
6
|
ad4antr |
|
| 47 |
|
simpr |
|
| 48 |
47 4
|
eleqtrdi |
|
| 49 |
1 29 2
|
elrspsn |
|
| 50 |
49
|
biimpa |
|
| 51 |
25 46 48 50
|
syl21anc |
|
| 52 |
45 51
|
r19.29a |
|
| 53 |
52
|
ex |
|
| 54 |
53
|
ssrdv |
|
| 55 |
2 1
|
rspssid |
|
| 56 |
|
vex |
|
| 57 |
56
|
snss |
|
| 58 |
55 57
|
sylibr |
|
| 59 |
17 21 58
|
syl2anc |
|
| 60 |
|
df-idom |
|
| 61 |
5 60
|
eleqtrdi |
|
| 62 |
61
|
elin1d |
|
| 63 |
62
|
ad6antr |
|
| 64 |
|
simplr |
|
| 65 |
|
simp-6r |
|
| 66 |
65
|
eldifad |
|
| 67 |
17
|
adantr |
|
| 68 |
67
|
ad2antrr |
|
| 69 |
1 29 68 64 66
|
ringcld |
|
| 70 |
|
eqid |
|
| 71 |
1 70
|
ringidcl |
|
| 72 |
9 71
|
syl |
|
| 73 |
72
|
ad6antr |
|
| 74 |
20
|
ad3antrrr |
|
| 75 |
|
simpr |
|
| 76 |
75
|
oveq2d |
|
| 77 |
|
simp-5r |
|
| 78 |
67
|
ad3antrrr |
|
| 79 |
66
|
adantr |
|
| 80 |
1 29 3
|
ringrz |
|
| 81 |
78 79 80
|
syl2anc |
|
| 82 |
76 77 81
|
3eqtr3d |
|
| 83 |
7
|
neneqd |
|
| 84 |
83
|
ad7antr |
|
| 85 |
82 84
|
pm2.65da |
|
| 86 |
85
|
neqned |
|
| 87 |
|
eldifsn |
|
| 88 |
74 86 87
|
sylanbrc |
|
| 89 |
5
|
ad6antr |
|
| 90 |
1 29 70 68 74
|
ringlidmd |
|
| 91 |
|
simpr |
|
| 92 |
1 29 68 64 66 74
|
ringassd |
|
| 93 |
|
simp-4r |
|
| 94 |
93
|
oveq2d |
|
| 95 |
92 94
|
eqtr2d |
|
| 96 |
90 91 95
|
3eqtrrd |
|
| 97 |
1 3 29 69 73 88 89 96
|
idomrcan |
|
| 98 |
12 70
|
1unit |
|
| 99 |
9 98
|
syl |
|
| 100 |
99
|
ad6antr |
|
| 101 |
97 100
|
eqeltrd |
|
| 102 |
12 29 1
|
unitmulclb |
|
| 103 |
102
|
simplbda |
|
| 104 |
63 64 66 101 103
|
syl31anc |
|
| 105 |
6
|
ad4antr |
|
| 106 |
|
simpr |
|
| 107 |
106 4
|
eleqtrdi |
|
| 108 |
1 29 2
|
elrspsn |
|
| 109 |
108
|
biimpa |
|
| 110 |
67 105 107 109
|
syl21anc |
|
| 111 |
104 110
|
r19.29a |
|
| 112 |
|
simp-4r |
|
| 113 |
112
|
eldifbd |
|
| 114 |
111 113
|
pm2.65da |
|
| 115 |
59 114
|
eldifd |
|
| 116 |
1 17 18 24 54 115
|
mxidlmaxv |
|
| 117 |
|
eqid |
|
| 118 |
5
|
ad3antrrr |
|
| 119 |
12 2 117 1 20 118
|
unitpidl1 |
|
| 120 |
116 119
|
mpbid |
|
| 121 |
19
|
eldifbd |
|
| 122 |
120 121
|
pm2.65da |
|
| 123 |
122
|
anasss |
|
| 124 |
123
|
neqned |
|
| 125 |
124
|
ralrimivva |
|
| 126 |
|
eqid |
|
| 127 |
|
eqid |
|
| 128 |
1 12 126 127 29
|
isirred |
|
| 129 |
16 125 128
|
sylanbrc |
|