| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mxidlmaxv.1 |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 2 |
|
mxidlmaxv.2 |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 3 |
|
mxidlmaxv.3 |
⊢ ( 𝜑 → 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) |
| 4 |
|
mxidlmaxv.4 |
⊢ ( 𝜑 → 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) |
| 5 |
|
mxidlmaxv.5 |
⊢ ( 𝜑 → 𝑀 ⊆ 𝐼 ) |
| 6 |
|
mxidlmaxv.6 |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝐼 ∖ 𝑀 ) ) |
| 7 |
1
|
mxidlmax |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ ( 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ∧ 𝑀 ⊆ 𝐼 ) ) → ( 𝐼 = 𝑀 ∨ 𝐼 = 𝐵 ) ) |
| 8 |
2 3 4 5 7
|
syl22anc |
⊢ ( 𝜑 → ( 𝐼 = 𝑀 ∨ 𝐼 = 𝐵 ) ) |
| 9 |
6
|
eldifad |
⊢ ( 𝜑 → 𝑋 ∈ 𝐼 ) |
| 10 |
6
|
eldifbd |
⊢ ( 𝜑 → ¬ 𝑋 ∈ 𝑀 ) |
| 11 |
|
nelne1 |
⊢ ( ( 𝑋 ∈ 𝐼 ∧ ¬ 𝑋 ∈ 𝑀 ) → 𝐼 ≠ 𝑀 ) |
| 12 |
9 10 11
|
syl2anc |
⊢ ( 𝜑 → 𝐼 ≠ 𝑀 ) |
| 13 |
12
|
neneqd |
⊢ ( 𝜑 → ¬ 𝐼 = 𝑀 ) |
| 14 |
8 13
|
orcnd |
⊢ ( 𝜑 → 𝐼 = 𝐵 ) |