| Step |
Hyp |
Ref |
Expression |
| 1 |
|
qsdrng.0 |
⊢ 𝑂 = ( oppr ‘ 𝑅 ) |
| 2 |
|
qsdrng.q |
⊢ 𝑄 = ( 𝑅 /s ( 𝑅 ~QG 𝑀 ) ) |
| 3 |
|
qsdrng.r |
⊢ ( 𝜑 → 𝑅 ∈ NzRing ) |
| 4 |
|
qsdrngi.1 |
⊢ ( 𝜑 → 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) |
| 5 |
|
qsdrngi.2 |
⊢ ( 𝜑 → 𝑀 ∈ ( MaxIdeal ‘ 𝑂 ) ) |
| 6 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 7 |
|
nzrring |
⊢ ( 𝑅 ∈ NzRing → 𝑅 ∈ Ring ) |
| 8 |
3 7
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 9 |
6
|
mxidlidl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) → 𝑀 ∈ ( LIdeal ‘ 𝑅 ) ) |
| 10 |
8 4 9
|
syl2anc |
⊢ ( 𝜑 → 𝑀 ∈ ( LIdeal ‘ 𝑅 ) ) |
| 11 |
1
|
opprring |
⊢ ( 𝑅 ∈ Ring → 𝑂 ∈ Ring ) |
| 12 |
8 11
|
syl |
⊢ ( 𝜑 → 𝑂 ∈ Ring ) |
| 13 |
|
eqid |
⊢ ( Base ‘ 𝑂 ) = ( Base ‘ 𝑂 ) |
| 14 |
13
|
mxidlidl |
⊢ ( ( 𝑂 ∈ Ring ∧ 𝑀 ∈ ( MaxIdeal ‘ 𝑂 ) ) → 𝑀 ∈ ( LIdeal ‘ 𝑂 ) ) |
| 15 |
12 5 14
|
syl2anc |
⊢ ( 𝜑 → 𝑀 ∈ ( LIdeal ‘ 𝑂 ) ) |
| 16 |
10 15
|
elind |
⊢ ( 𝜑 → 𝑀 ∈ ( ( LIdeal ‘ 𝑅 ) ∩ ( LIdeal ‘ 𝑂 ) ) ) |
| 17 |
|
eqid |
⊢ ( LIdeal ‘ 𝑅 ) = ( LIdeal ‘ 𝑅 ) |
| 18 |
|
eqid |
⊢ ( LIdeal ‘ 𝑂 ) = ( LIdeal ‘ 𝑂 ) |
| 19 |
|
eqid |
⊢ ( 2Ideal ‘ 𝑅 ) = ( 2Ideal ‘ 𝑅 ) |
| 20 |
17 1 18 19
|
2idlval |
⊢ ( 2Ideal ‘ 𝑅 ) = ( ( LIdeal ‘ 𝑅 ) ∩ ( LIdeal ‘ 𝑂 ) ) |
| 21 |
16 20
|
eleqtrrdi |
⊢ ( 𝜑 → 𝑀 ∈ ( 2Ideal ‘ 𝑅 ) ) |
| 22 |
6
|
mxidlnr |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) → 𝑀 ≠ ( Base ‘ 𝑅 ) ) |
| 23 |
8 4 22
|
syl2anc |
⊢ ( 𝜑 → 𝑀 ≠ ( Base ‘ 𝑅 ) ) |
| 24 |
2 6 8 3 21 23
|
qsnzr |
⊢ ( 𝜑 → 𝑄 ∈ NzRing ) |
| 25 |
|
eqid |
⊢ ( 1r ‘ 𝑄 ) = ( 1r ‘ 𝑄 ) |
| 26 |
|
eqid |
⊢ ( 0g ‘ 𝑄 ) = ( 0g ‘ 𝑄 ) |
| 27 |
25 26
|
nzrnz |
⊢ ( 𝑄 ∈ NzRing → ( 1r ‘ 𝑄 ) ≠ ( 0g ‘ 𝑄 ) ) |
| 28 |
24 27
|
syl |
⊢ ( 𝜑 → ( 1r ‘ 𝑄 ) ≠ ( 0g ‘ 𝑄 ) ) |
| 29 |
|
eqid |
⊢ ( Base ‘ 𝑄 ) = ( Base ‘ 𝑄 ) |
| 30 |
|
eqid |
⊢ ( .r ‘ 𝑄 ) = ( .r ‘ 𝑄 ) |
| 31 |
|
eqid |
⊢ ( Unit ‘ 𝑄 ) = ( Unit ‘ 𝑄 ) |
| 32 |
2 19
|
qusring |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ ( 2Ideal ‘ 𝑅 ) ) → 𝑄 ∈ Ring ) |
| 33 |
8 21 32
|
syl2anc |
⊢ ( 𝜑 → 𝑄 ∈ Ring ) |
| 34 |
33
|
ad10antr |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑣 ( .r ‘ 𝑄 ) [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) = ( 1r ‘ 𝑄 ) ) ∧ 𝑤 ∈ ( Base ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ ( 𝑤 ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) [ 𝑥 ] ( 𝑂 ~QG 𝑀 ) ) = ( 1r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑣 = [ 𝑟 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑅 ) ) → 𝑄 ∈ Ring ) |
| 35 |
34
|
adantr |
⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑣 ( .r ‘ 𝑄 ) [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) = ( 1r ‘ 𝑄 ) ) ∧ 𝑤 ∈ ( Base ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ ( 𝑤 ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) [ 𝑥 ] ( 𝑂 ~QG 𝑀 ) ) = ( 1r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑣 = [ 𝑟 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑤 = [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ) → 𝑄 ∈ Ring ) |
| 36 |
|
eldifi |
⊢ ( 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) → 𝑢 ∈ ( Base ‘ 𝑄 ) ) |
| 37 |
36
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) → 𝑢 ∈ ( Base ‘ 𝑄 ) ) |
| 38 |
37
|
ad10antr |
⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑣 ( .r ‘ 𝑄 ) [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) = ( 1r ‘ 𝑄 ) ) ∧ 𝑤 ∈ ( Base ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ ( 𝑤 ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) [ 𝑥 ] ( 𝑂 ~QG 𝑀 ) ) = ( 1r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑣 = [ 𝑟 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑤 = [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ) → 𝑢 ∈ ( Base ‘ 𝑄 ) ) |
| 39 |
|
ovex |
⊢ ( 𝑅 ~QG 𝑀 ) ∈ V |
| 40 |
39
|
ecelqsi |
⊢ ( 𝑟 ∈ ( Base ‘ 𝑅 ) → [ 𝑟 ] ( 𝑅 ~QG 𝑀 ) ∈ ( ( Base ‘ 𝑅 ) / ( 𝑅 ~QG 𝑀 ) ) ) |
| 41 |
40
|
ad4antlr |
⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑣 ( .r ‘ 𝑄 ) [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) = ( 1r ‘ 𝑄 ) ) ∧ 𝑤 ∈ ( Base ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ ( 𝑤 ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) [ 𝑥 ] ( 𝑂 ~QG 𝑀 ) ) = ( 1r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑣 = [ 𝑟 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑤 = [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ) → [ 𝑟 ] ( 𝑅 ~QG 𝑀 ) ∈ ( ( Base ‘ 𝑅 ) / ( 𝑅 ~QG 𝑀 ) ) ) |
| 42 |
2
|
a1i |
⊢ ( 𝜑 → 𝑄 = ( 𝑅 /s ( 𝑅 ~QG 𝑀 ) ) ) |
| 43 |
|
eqidd |
⊢ ( 𝜑 → ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) ) |
| 44 |
|
ovexd |
⊢ ( 𝜑 → ( 𝑅 ~QG 𝑀 ) ∈ V ) |
| 45 |
42 43 44 3
|
qusbas |
⊢ ( 𝜑 → ( ( Base ‘ 𝑅 ) / ( 𝑅 ~QG 𝑀 ) ) = ( Base ‘ 𝑄 ) ) |
| 46 |
45
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) → ( ( Base ‘ 𝑅 ) / ( 𝑅 ~QG 𝑀 ) ) = ( Base ‘ 𝑄 ) ) |
| 47 |
46
|
ad10antr |
⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑣 ( .r ‘ 𝑄 ) [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) = ( 1r ‘ 𝑄 ) ) ∧ 𝑤 ∈ ( Base ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ ( 𝑤 ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) [ 𝑥 ] ( 𝑂 ~QG 𝑀 ) ) = ( 1r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑣 = [ 𝑟 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑤 = [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ) → ( ( Base ‘ 𝑅 ) / ( 𝑅 ~QG 𝑀 ) ) = ( Base ‘ 𝑄 ) ) |
| 48 |
41 47
|
eleqtrd |
⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑣 ( .r ‘ 𝑄 ) [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) = ( 1r ‘ 𝑄 ) ) ∧ 𝑤 ∈ ( Base ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ ( 𝑤 ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) [ 𝑥 ] ( 𝑂 ~QG 𝑀 ) ) = ( 1r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑣 = [ 𝑟 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑤 = [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ) → [ 𝑟 ] ( 𝑅 ~QG 𝑀 ) ∈ ( Base ‘ 𝑄 ) ) |
| 49 |
39
|
ecelqsi |
⊢ ( 𝑠 ∈ ( Base ‘ 𝑅 ) → [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ∈ ( ( Base ‘ 𝑅 ) / ( 𝑅 ~QG 𝑀 ) ) ) |
| 50 |
49
|
ad2antlr |
⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑣 ( .r ‘ 𝑄 ) [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) = ( 1r ‘ 𝑄 ) ) ∧ 𝑤 ∈ ( Base ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ ( 𝑤 ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) [ 𝑥 ] ( 𝑂 ~QG 𝑀 ) ) = ( 1r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑣 = [ 𝑟 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑤 = [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ) → [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ∈ ( ( Base ‘ 𝑅 ) / ( 𝑅 ~QG 𝑀 ) ) ) |
| 51 |
50 47
|
eleqtrd |
⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑣 ( .r ‘ 𝑄 ) [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) = ( 1r ‘ 𝑄 ) ) ∧ 𝑤 ∈ ( Base ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ ( 𝑤 ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) [ 𝑥 ] ( 𝑂 ~QG 𝑀 ) ) = ( 1r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑣 = [ 𝑟 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑤 = [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ) → [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ∈ ( Base ‘ 𝑄 ) ) |
| 52 |
|
simpllr |
⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑣 ( .r ‘ 𝑄 ) [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) = ( 1r ‘ 𝑄 ) ) ∧ 𝑤 ∈ ( Base ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ ( 𝑤 ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) [ 𝑥 ] ( 𝑂 ~QG 𝑀 ) ) = ( 1r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑣 = [ 𝑟 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑤 = [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ) → 𝑣 = [ 𝑟 ] ( 𝑅 ~QG 𝑀 ) ) |
| 53 |
|
simp-9r |
⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑣 ( .r ‘ 𝑄 ) [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) = ( 1r ‘ 𝑄 ) ) ∧ 𝑤 ∈ ( Base ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ ( 𝑤 ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) [ 𝑥 ] ( 𝑂 ~QG 𝑀 ) ) = ( 1r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑣 = [ 𝑟 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑤 = [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ) → 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) |
| 54 |
53
|
eqcomd |
⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑣 ( .r ‘ 𝑄 ) [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) = ( 1r ‘ 𝑄 ) ) ∧ 𝑤 ∈ ( Base ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ ( 𝑤 ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) [ 𝑥 ] ( 𝑂 ~QG 𝑀 ) ) = ( 1r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑣 = [ 𝑟 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑤 = [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ) → [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) = 𝑢 ) |
| 55 |
52 54
|
oveq12d |
⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑣 ( .r ‘ 𝑄 ) [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) = ( 1r ‘ 𝑄 ) ) ∧ 𝑤 ∈ ( Base ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ ( 𝑤 ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) [ 𝑥 ] ( 𝑂 ~QG 𝑀 ) ) = ( 1r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑣 = [ 𝑟 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑤 = [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ) → ( 𝑣 ( .r ‘ 𝑄 ) [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) = ( [ 𝑟 ] ( 𝑅 ~QG 𝑀 ) ( .r ‘ 𝑄 ) 𝑢 ) ) |
| 56 |
|
simp-7r |
⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑣 ( .r ‘ 𝑄 ) [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) = ( 1r ‘ 𝑄 ) ) ∧ 𝑤 ∈ ( Base ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ ( 𝑤 ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) [ 𝑥 ] ( 𝑂 ~QG 𝑀 ) ) = ( 1r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑣 = [ 𝑟 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑤 = [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ) → ( 𝑣 ( .r ‘ 𝑄 ) [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) = ( 1r ‘ 𝑄 ) ) |
| 57 |
55 56
|
eqtr3d |
⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑣 ( .r ‘ 𝑄 ) [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) = ( 1r ‘ 𝑄 ) ) ∧ 𝑤 ∈ ( Base ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ ( 𝑤 ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) [ 𝑥 ] ( 𝑂 ~QG 𝑀 ) ) = ( 1r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑣 = [ 𝑟 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑤 = [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ) → ( [ 𝑟 ] ( 𝑅 ~QG 𝑀 ) ( .r ‘ 𝑄 ) 𝑢 ) = ( 1r ‘ 𝑄 ) ) |
| 58 |
|
eqid |
⊢ ( oppr ‘ 𝑄 ) = ( oppr ‘ 𝑄 ) |
| 59 |
|
eqid |
⊢ ( .r ‘ ( oppr ‘ 𝑄 ) ) = ( .r ‘ ( oppr ‘ 𝑄 ) ) |
| 60 |
29 30 58 59
|
opprmul |
⊢ ( [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ( .r ‘ ( oppr ‘ 𝑄 ) ) 𝑢 ) = ( 𝑢 ( .r ‘ 𝑄 ) [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ) |
| 61 |
|
simp-5r |
⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑣 ( .r ‘ 𝑄 ) [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) = ( 1r ‘ 𝑄 ) ) ∧ 𝑤 ∈ ( Base ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ ( 𝑤 ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) [ 𝑥 ] ( 𝑂 ~QG 𝑀 ) ) = ( 1r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑣 = [ 𝑟 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑤 = [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ) → ( 𝑤 ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) [ 𝑥 ] ( 𝑂 ~QG 𝑀 ) ) = ( 1r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) |
| 62 |
8
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) → 𝑅 ∈ Ring ) |
| 63 |
62
|
ad8antr |
⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑣 ( .r ‘ 𝑄 ) [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) = ( 1r ‘ 𝑄 ) ) ∧ 𝑤 ∈ ( Base ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ ( 𝑤 ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) [ 𝑥 ] ( 𝑂 ~QG 𝑀 ) ) = ( 1r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑣 = [ 𝑟 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑤 = [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ) → 𝑅 ∈ Ring ) |
| 64 |
21
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) → 𝑀 ∈ ( 2Ideal ‘ 𝑅 ) ) |
| 65 |
64
|
ad8antr |
⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑣 ( .r ‘ 𝑄 ) [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) = ( 1r ‘ 𝑄 ) ) ∧ 𝑤 ∈ ( Base ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ ( 𝑤 ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) [ 𝑥 ] ( 𝑂 ~QG 𝑀 ) ) = ( 1r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑣 = [ 𝑟 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑤 = [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ) → 𝑀 ∈ ( 2Ideal ‘ 𝑅 ) ) |
| 66 |
6 1 2 63 65 29 51 38
|
opprqusmulr |
⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑣 ( .r ‘ 𝑄 ) [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) = ( 1r ‘ 𝑄 ) ) ∧ 𝑤 ∈ ( Base ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ ( 𝑤 ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) [ 𝑥 ] ( 𝑂 ~QG 𝑀 ) ) = ( 1r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑣 = [ 𝑟 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑤 = [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ) → ( [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ( .r ‘ ( oppr ‘ 𝑄 ) ) 𝑢 ) = ( [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) 𝑢 ) ) |
| 67 |
|
simpr |
⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑣 ( .r ‘ 𝑄 ) [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) = ( 1r ‘ 𝑄 ) ) ∧ 𝑤 ∈ ( Base ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ ( 𝑤 ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) [ 𝑥 ] ( 𝑂 ~QG 𝑀 ) ) = ( 1r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑣 = [ 𝑟 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑤 = [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ) → 𝑤 = [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ) |
| 68 |
6 17
|
lidlss |
⊢ ( 𝑀 ∈ ( LIdeal ‘ 𝑅 ) → 𝑀 ⊆ ( Base ‘ 𝑅 ) ) |
| 69 |
10 68
|
syl |
⊢ ( 𝜑 → 𝑀 ⊆ ( Base ‘ 𝑅 ) ) |
| 70 |
1 6
|
oppreqg |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑀 ⊆ ( Base ‘ 𝑅 ) ) → ( 𝑅 ~QG 𝑀 ) = ( 𝑂 ~QG 𝑀 ) ) |
| 71 |
8 69 70
|
syl2anc |
⊢ ( 𝜑 → ( 𝑅 ~QG 𝑀 ) = ( 𝑂 ~QG 𝑀 ) ) |
| 72 |
71
|
ad10antr |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑣 ( .r ‘ 𝑄 ) [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) = ( 1r ‘ 𝑄 ) ) ∧ 𝑤 ∈ ( Base ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ ( 𝑤 ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) [ 𝑥 ] ( 𝑂 ~QG 𝑀 ) ) = ( 1r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑣 = [ 𝑟 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑅 ~QG 𝑀 ) = ( 𝑂 ~QG 𝑀 ) ) |
| 73 |
72
|
adantr |
⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑣 ( .r ‘ 𝑄 ) [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) = ( 1r ‘ 𝑄 ) ) ∧ 𝑤 ∈ ( Base ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ ( 𝑤 ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) [ 𝑥 ] ( 𝑂 ~QG 𝑀 ) ) = ( 1r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑣 = [ 𝑟 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑤 = [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ) → ( 𝑅 ~QG 𝑀 ) = ( 𝑂 ~QG 𝑀 ) ) |
| 74 |
73
|
eceq2d |
⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑣 ( .r ‘ 𝑄 ) [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) = ( 1r ‘ 𝑄 ) ) ∧ 𝑤 ∈ ( Base ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ ( 𝑤 ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) [ 𝑥 ] ( 𝑂 ~QG 𝑀 ) ) = ( 1r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑣 = [ 𝑟 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑤 = [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ) → [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) = [ 𝑥 ] ( 𝑂 ~QG 𝑀 ) ) |
| 75 |
53 74
|
eqtr2d |
⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑣 ( .r ‘ 𝑄 ) [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) = ( 1r ‘ 𝑄 ) ) ∧ 𝑤 ∈ ( Base ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ ( 𝑤 ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) [ 𝑥 ] ( 𝑂 ~QG 𝑀 ) ) = ( 1r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑣 = [ 𝑟 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑤 = [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ) → [ 𝑥 ] ( 𝑂 ~QG 𝑀 ) = 𝑢 ) |
| 76 |
67 75
|
oveq12d |
⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑣 ( .r ‘ 𝑄 ) [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) = ( 1r ‘ 𝑄 ) ) ∧ 𝑤 ∈ ( Base ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ ( 𝑤 ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) [ 𝑥 ] ( 𝑂 ~QG 𝑀 ) ) = ( 1r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑣 = [ 𝑟 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑤 = [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ) → ( 𝑤 ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) [ 𝑥 ] ( 𝑂 ~QG 𝑀 ) ) = ( [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) 𝑢 ) ) |
| 77 |
66 76
|
eqtr4d |
⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑣 ( .r ‘ 𝑄 ) [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) = ( 1r ‘ 𝑄 ) ) ∧ 𝑤 ∈ ( Base ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ ( 𝑤 ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) [ 𝑥 ] ( 𝑂 ~QG 𝑀 ) ) = ( 1r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑣 = [ 𝑟 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑤 = [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ) → ( [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ( .r ‘ ( oppr ‘ 𝑄 ) ) 𝑢 ) = ( 𝑤 ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) [ 𝑥 ] ( 𝑂 ~QG 𝑀 ) ) ) |
| 78 |
58 25
|
oppr1 |
⊢ ( 1r ‘ 𝑄 ) = ( 1r ‘ ( oppr ‘ 𝑄 ) ) |
| 79 |
6 1 2 8 21
|
opprqus1r |
⊢ ( 𝜑 → ( 1r ‘ ( oppr ‘ 𝑄 ) ) = ( 1r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) |
| 80 |
78 79
|
eqtrid |
⊢ ( 𝜑 → ( 1r ‘ 𝑄 ) = ( 1r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) |
| 81 |
80
|
ad10antr |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑣 ( .r ‘ 𝑄 ) [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) = ( 1r ‘ 𝑄 ) ) ∧ 𝑤 ∈ ( Base ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ ( 𝑤 ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) [ 𝑥 ] ( 𝑂 ~QG 𝑀 ) ) = ( 1r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑣 = [ 𝑟 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑅 ) ) → ( 1r ‘ 𝑄 ) = ( 1r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) |
| 82 |
81
|
adantr |
⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑣 ( .r ‘ 𝑄 ) [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) = ( 1r ‘ 𝑄 ) ) ∧ 𝑤 ∈ ( Base ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ ( 𝑤 ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) [ 𝑥 ] ( 𝑂 ~QG 𝑀 ) ) = ( 1r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑣 = [ 𝑟 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑤 = [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ) → ( 1r ‘ 𝑄 ) = ( 1r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) |
| 83 |
61 77 82
|
3eqtr4d |
⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑣 ( .r ‘ 𝑄 ) [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) = ( 1r ‘ 𝑄 ) ) ∧ 𝑤 ∈ ( Base ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ ( 𝑤 ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) [ 𝑥 ] ( 𝑂 ~QG 𝑀 ) ) = ( 1r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑣 = [ 𝑟 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑤 = [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ) → ( [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ( .r ‘ ( oppr ‘ 𝑄 ) ) 𝑢 ) = ( 1r ‘ 𝑄 ) ) |
| 84 |
60 83
|
eqtr3id |
⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑣 ( .r ‘ 𝑄 ) [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) = ( 1r ‘ 𝑄 ) ) ∧ 𝑤 ∈ ( Base ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ ( 𝑤 ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) [ 𝑥 ] ( 𝑂 ~QG 𝑀 ) ) = ( 1r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑣 = [ 𝑟 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑤 = [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ) → ( 𝑢 ( .r ‘ 𝑄 ) [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ) = ( 1r ‘ 𝑄 ) ) |
| 85 |
29 26 25 30 31 35 38 48 51 57 84
|
ringinveu |
⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑣 ( .r ‘ 𝑄 ) [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) = ( 1r ‘ 𝑄 ) ) ∧ 𝑤 ∈ ( Base ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ ( 𝑤 ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) [ 𝑥 ] ( 𝑂 ~QG 𝑀 ) ) = ( 1r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑣 = [ 𝑟 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑤 = [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ) → [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) = [ 𝑟 ] ( 𝑅 ~QG 𝑀 ) ) |
| 86 |
85 67 52
|
3eqtr4rd |
⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑣 ( .r ‘ 𝑄 ) [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) = ( 1r ‘ 𝑄 ) ) ∧ 𝑤 ∈ ( Base ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ ( 𝑤 ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) [ 𝑥 ] ( 𝑂 ~QG 𝑀 ) ) = ( 1r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑣 = [ 𝑟 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑤 = [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ) → 𝑣 = 𝑤 ) |
| 87 |
86
|
oveq2d |
⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑣 ( .r ‘ 𝑄 ) [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) = ( 1r ‘ 𝑄 ) ) ∧ 𝑤 ∈ ( Base ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ ( 𝑤 ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) [ 𝑥 ] ( 𝑂 ~QG 𝑀 ) ) = ( 1r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑣 = [ 𝑟 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑤 = [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ) → ( 𝑢 ( .r ‘ 𝑄 ) 𝑣 ) = ( 𝑢 ( .r ‘ 𝑄 ) 𝑤 ) ) |
| 88 |
67
|
oveq2d |
⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑣 ( .r ‘ 𝑄 ) [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) = ( 1r ‘ 𝑄 ) ) ∧ 𝑤 ∈ ( Base ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ ( 𝑤 ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) [ 𝑥 ] ( 𝑂 ~QG 𝑀 ) ) = ( 1r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑣 = [ 𝑟 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑤 = [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ) → ( 𝑢 ( .r ‘ 𝑄 ) 𝑤 ) = ( 𝑢 ( .r ‘ 𝑄 ) [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ) ) |
| 89 |
87 88 84
|
3eqtrd |
⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑣 ( .r ‘ 𝑄 ) [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) = ( 1r ‘ 𝑄 ) ) ∧ 𝑤 ∈ ( Base ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ ( 𝑤 ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) [ 𝑥 ] ( 𝑂 ~QG 𝑀 ) ) = ( 1r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑣 = [ 𝑟 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑤 = [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ) → ( 𝑢 ( .r ‘ 𝑄 ) 𝑣 ) = ( 1r ‘ 𝑄 ) ) |
| 90 |
|
simp-4r |
⊢ ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑣 ( .r ‘ 𝑄 ) [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) = ( 1r ‘ 𝑄 ) ) ∧ 𝑤 ∈ ( Base ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ ( 𝑤 ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) [ 𝑥 ] ( 𝑂 ~QG 𝑀 ) ) = ( 1r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑣 = [ 𝑟 ] ( 𝑅 ~QG 𝑀 ) ) → 𝑤 ∈ ( Base ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) |
| 91 |
71
|
qseq2d |
⊢ ( 𝜑 → ( ( Base ‘ 𝑅 ) / ( 𝑅 ~QG 𝑀 ) ) = ( ( Base ‘ 𝑅 ) / ( 𝑂 ~QG 𝑀 ) ) ) |
| 92 |
91
|
ad9antr |
⊢ ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑣 ( .r ‘ 𝑄 ) [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) = ( 1r ‘ 𝑄 ) ) ∧ 𝑤 ∈ ( Base ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ ( 𝑤 ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) [ 𝑥 ] ( 𝑂 ~QG 𝑀 ) ) = ( 1r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑣 = [ 𝑟 ] ( 𝑅 ~QG 𝑀 ) ) → ( ( Base ‘ 𝑅 ) / ( 𝑅 ~QG 𝑀 ) ) = ( ( Base ‘ 𝑅 ) / ( 𝑂 ~QG 𝑀 ) ) ) |
| 93 |
|
eqidd |
⊢ ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑣 ( .r ‘ 𝑄 ) [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) = ( 1r ‘ 𝑄 ) ) ∧ 𝑤 ∈ ( Base ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ ( 𝑤 ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) [ 𝑥 ] ( 𝑂 ~QG 𝑀 ) ) = ( 1r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑣 = [ 𝑟 ] ( 𝑅 ~QG 𝑀 ) ) → ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) = ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) |
| 94 |
1 6
|
opprbas |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑂 ) |
| 95 |
94
|
a1i |
⊢ ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑣 ( .r ‘ 𝑄 ) [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) = ( 1r ‘ 𝑄 ) ) ∧ 𝑤 ∈ ( Base ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ ( 𝑤 ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) [ 𝑥 ] ( 𝑂 ~QG 𝑀 ) ) = ( 1r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑣 = [ 𝑟 ] ( 𝑅 ~QG 𝑀 ) ) → ( Base ‘ 𝑅 ) = ( Base ‘ 𝑂 ) ) |
| 96 |
|
ovexd |
⊢ ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑣 ( .r ‘ 𝑄 ) [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) = ( 1r ‘ 𝑄 ) ) ∧ 𝑤 ∈ ( Base ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ ( 𝑤 ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) [ 𝑥 ] ( 𝑂 ~QG 𝑀 ) ) = ( 1r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑣 = [ 𝑟 ] ( 𝑅 ~QG 𝑀 ) ) → ( 𝑂 ~QG 𝑀 ) ∈ V ) |
| 97 |
1
|
fvexi |
⊢ 𝑂 ∈ V |
| 98 |
97
|
a1i |
⊢ ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑣 ( .r ‘ 𝑄 ) [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) = ( 1r ‘ 𝑄 ) ) ∧ 𝑤 ∈ ( Base ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ ( 𝑤 ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) [ 𝑥 ] ( 𝑂 ~QG 𝑀 ) ) = ( 1r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑣 = [ 𝑟 ] ( 𝑅 ~QG 𝑀 ) ) → 𝑂 ∈ V ) |
| 99 |
93 95 96 98
|
qusbas |
⊢ ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑣 ( .r ‘ 𝑄 ) [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) = ( 1r ‘ 𝑄 ) ) ∧ 𝑤 ∈ ( Base ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ ( 𝑤 ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) [ 𝑥 ] ( 𝑂 ~QG 𝑀 ) ) = ( 1r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑣 = [ 𝑟 ] ( 𝑅 ~QG 𝑀 ) ) → ( ( Base ‘ 𝑅 ) / ( 𝑂 ~QG 𝑀 ) ) = ( Base ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) |
| 100 |
92 99
|
eqtr2d |
⊢ ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑣 ( .r ‘ 𝑄 ) [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) = ( 1r ‘ 𝑄 ) ) ∧ 𝑤 ∈ ( Base ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ ( 𝑤 ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) [ 𝑥 ] ( 𝑂 ~QG 𝑀 ) ) = ( 1r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑣 = [ 𝑟 ] ( 𝑅 ~QG 𝑀 ) ) → ( Base ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) = ( ( Base ‘ 𝑅 ) / ( 𝑅 ~QG 𝑀 ) ) ) |
| 101 |
90 100
|
eleqtrd |
⊢ ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑣 ( .r ‘ 𝑄 ) [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) = ( 1r ‘ 𝑄 ) ) ∧ 𝑤 ∈ ( Base ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ ( 𝑤 ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) [ 𝑥 ] ( 𝑂 ~QG 𝑀 ) ) = ( 1r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑣 = [ 𝑟 ] ( 𝑅 ~QG 𝑀 ) ) → 𝑤 ∈ ( ( Base ‘ 𝑅 ) / ( 𝑅 ~QG 𝑀 ) ) ) |
| 102 |
|
elqsi |
⊢ ( 𝑤 ∈ ( ( Base ‘ 𝑅 ) / ( 𝑅 ~QG 𝑀 ) ) → ∃ 𝑠 ∈ ( Base ‘ 𝑅 ) 𝑤 = [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ) |
| 103 |
101 102
|
syl |
⊢ ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑣 ( .r ‘ 𝑄 ) [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) = ( 1r ‘ 𝑄 ) ) ∧ 𝑤 ∈ ( Base ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ ( 𝑤 ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) [ 𝑥 ] ( 𝑂 ~QG 𝑀 ) ) = ( 1r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑣 = [ 𝑟 ] ( 𝑅 ~QG 𝑀 ) ) → ∃ 𝑠 ∈ ( Base ‘ 𝑅 ) 𝑤 = [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ) |
| 104 |
89 103
|
r19.29a |
⊢ ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑣 ( .r ‘ 𝑄 ) [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) = ( 1r ‘ 𝑄 ) ) ∧ 𝑤 ∈ ( Base ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ ( 𝑤 ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) [ 𝑥 ] ( 𝑂 ~QG 𝑀 ) ) = ( 1r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑣 = [ 𝑟 ] ( 𝑅 ~QG 𝑀 ) ) → ( 𝑢 ( .r ‘ 𝑄 ) 𝑣 ) = ( 1r ‘ 𝑄 ) ) |
| 105 |
|
simp-4r |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑣 ( .r ‘ 𝑄 ) [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) = ( 1r ‘ 𝑄 ) ) ∧ 𝑤 ∈ ( Base ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ ( 𝑤 ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) [ 𝑥 ] ( 𝑂 ~QG 𝑀 ) ) = ( 1r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) → 𝑣 ∈ ( Base ‘ 𝑄 ) ) |
| 106 |
46
|
ad6antr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑣 ( .r ‘ 𝑄 ) [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) = ( 1r ‘ 𝑄 ) ) ∧ 𝑤 ∈ ( Base ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ ( 𝑤 ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) [ 𝑥 ] ( 𝑂 ~QG 𝑀 ) ) = ( 1r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) → ( ( Base ‘ 𝑅 ) / ( 𝑅 ~QG 𝑀 ) ) = ( Base ‘ 𝑄 ) ) |
| 107 |
105 106
|
eleqtrrd |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑣 ( .r ‘ 𝑄 ) [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) = ( 1r ‘ 𝑄 ) ) ∧ 𝑤 ∈ ( Base ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ ( 𝑤 ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) [ 𝑥 ] ( 𝑂 ~QG 𝑀 ) ) = ( 1r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) → 𝑣 ∈ ( ( Base ‘ 𝑅 ) / ( 𝑅 ~QG 𝑀 ) ) ) |
| 108 |
|
elqsi |
⊢ ( 𝑣 ∈ ( ( Base ‘ 𝑅 ) / ( 𝑅 ~QG 𝑀 ) ) → ∃ 𝑟 ∈ ( Base ‘ 𝑅 ) 𝑣 = [ 𝑟 ] ( 𝑅 ~QG 𝑀 ) ) |
| 109 |
107 108
|
syl |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑣 ( .r ‘ 𝑄 ) [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) = ( 1r ‘ 𝑄 ) ) ∧ 𝑤 ∈ ( Base ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ ( 𝑤 ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) [ 𝑥 ] ( 𝑂 ~QG 𝑀 ) ) = ( 1r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) → ∃ 𝑟 ∈ ( Base ‘ 𝑅 ) 𝑣 = [ 𝑟 ] ( 𝑅 ~QG 𝑀 ) ) |
| 110 |
104 109
|
r19.29a |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑣 ( .r ‘ 𝑄 ) [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) = ( 1r ‘ 𝑄 ) ) ∧ 𝑤 ∈ ( Base ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ ( 𝑤 ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) [ 𝑥 ] ( 𝑂 ~QG 𝑀 ) ) = ( 1r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) → ( 𝑢 ( .r ‘ 𝑄 ) 𝑣 ) = ( 1r ‘ 𝑄 ) ) |
| 111 |
|
eqid |
⊢ ( oppr ‘ 𝑂 ) = ( oppr ‘ 𝑂 ) |
| 112 |
|
eqid |
⊢ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) = ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) |
| 113 |
3
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) → 𝑅 ∈ NzRing ) |
| 114 |
1
|
opprnzr |
⊢ ( 𝑅 ∈ NzRing → 𝑂 ∈ NzRing ) |
| 115 |
113 114
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) → 𝑂 ∈ NzRing ) |
| 116 |
5
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) → 𝑀 ∈ ( MaxIdeal ‘ 𝑂 ) ) |
| 117 |
4
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) → 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) |
| 118 |
1 62 117
|
opprmxidlabs |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) → 𝑀 ∈ ( MaxIdeal ‘ ( oppr ‘ 𝑂 ) ) ) |
| 119 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) → 𝑥 ∈ ( Base ‘ 𝑅 ) ) |
| 120 |
94
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) → ( Base ‘ 𝑅 ) = ( Base ‘ 𝑂 ) ) |
| 121 |
119 120
|
eleqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) → 𝑥 ∈ ( Base ‘ 𝑂 ) ) |
| 122 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑥 ∈ 𝑀 ) → 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) |
| 123 |
8
|
ringgrpd |
⊢ ( 𝜑 → 𝑅 ∈ Grp ) |
| 124 |
123
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑥 ∈ 𝑀 ) → 𝑅 ∈ Grp ) |
| 125 |
|
lidlnsg |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ ( LIdeal ‘ 𝑅 ) ) → 𝑀 ∈ ( NrmSGrp ‘ 𝑅 ) ) |
| 126 |
8 10 125
|
syl2anc |
⊢ ( 𝜑 → 𝑀 ∈ ( NrmSGrp ‘ 𝑅 ) ) |
| 127 |
|
nsgsubg |
⊢ ( 𝑀 ∈ ( NrmSGrp ‘ 𝑅 ) → 𝑀 ∈ ( SubGrp ‘ 𝑅 ) ) |
| 128 |
126 127
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ ( SubGrp ‘ 𝑅 ) ) |
| 129 |
128
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑥 ∈ 𝑀 ) → 𝑀 ∈ ( SubGrp ‘ 𝑅 ) ) |
| 130 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑥 ∈ 𝑀 ) → 𝑥 ∈ 𝑀 ) |
| 131 |
|
eqid |
⊢ ( 𝑅 ~QG 𝑀 ) = ( 𝑅 ~QG 𝑀 ) |
| 132 |
131
|
eqg0el |
⊢ ( ( 𝑅 ∈ Grp ∧ 𝑀 ∈ ( SubGrp ‘ 𝑅 ) ) → ( [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) = 𝑀 ↔ 𝑥 ∈ 𝑀 ) ) |
| 133 |
132
|
biimpar |
⊢ ( ( ( 𝑅 ∈ Grp ∧ 𝑀 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ 𝑥 ∈ 𝑀 ) → [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) = 𝑀 ) |
| 134 |
124 129 130 133
|
syl21anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑥 ∈ 𝑀 ) → [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) = 𝑀 ) |
| 135 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
| 136 |
6 131 135
|
eqgid |
⊢ ( 𝑀 ∈ ( SubGrp ‘ 𝑅 ) → [ ( 0g ‘ 𝑅 ) ] ( 𝑅 ~QG 𝑀 ) = 𝑀 ) |
| 137 |
129 136
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑥 ∈ 𝑀 ) → [ ( 0g ‘ 𝑅 ) ] ( 𝑅 ~QG 𝑀 ) = 𝑀 ) |
| 138 |
134 137
|
eqtr4d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑥 ∈ 𝑀 ) → [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) = [ ( 0g ‘ 𝑅 ) ] ( 𝑅 ~QG 𝑀 ) ) |
| 139 |
2 135
|
qus0 |
⊢ ( 𝑀 ∈ ( NrmSGrp ‘ 𝑅 ) → [ ( 0g ‘ 𝑅 ) ] ( 𝑅 ~QG 𝑀 ) = ( 0g ‘ 𝑄 ) ) |
| 140 |
126 139
|
syl |
⊢ ( 𝜑 → [ ( 0g ‘ 𝑅 ) ] ( 𝑅 ~QG 𝑀 ) = ( 0g ‘ 𝑄 ) ) |
| 141 |
140
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑥 ∈ 𝑀 ) → [ ( 0g ‘ 𝑅 ) ] ( 𝑅 ~QG 𝑀 ) = ( 0g ‘ 𝑄 ) ) |
| 142 |
122 138 141
|
3eqtrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑥 ∈ 𝑀 ) → 𝑢 = ( 0g ‘ 𝑄 ) ) |
| 143 |
|
eldifsnneq |
⊢ ( 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) → ¬ 𝑢 = ( 0g ‘ 𝑄 ) ) |
| 144 |
143
|
ad4antlr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑥 ∈ 𝑀 ) → ¬ 𝑢 = ( 0g ‘ 𝑄 ) ) |
| 145 |
142 144
|
pm2.65da |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) → ¬ 𝑥 ∈ 𝑀 ) |
| 146 |
111 112 115 116 118 121 145
|
qsdrngilem |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) → ∃ 𝑤 ∈ ( Base ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ( 𝑤 ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) [ 𝑥 ] ( 𝑂 ~QG 𝑀 ) ) = ( 1r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) |
| 147 |
146
|
ad2antrr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑣 ( .r ‘ 𝑄 ) [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) = ( 1r ‘ 𝑄 ) ) → ∃ 𝑤 ∈ ( Base ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ( 𝑤 ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) [ 𝑥 ] ( 𝑂 ~QG 𝑀 ) ) = ( 1r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) |
| 148 |
110 147
|
r19.29a |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑣 ( .r ‘ 𝑄 ) [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) = ( 1r ‘ 𝑄 ) ) → ( 𝑢 ( .r ‘ 𝑄 ) 𝑣 ) = ( 1r ‘ 𝑄 ) ) |
| 149 |
|
simpllr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑣 ( .r ‘ 𝑄 ) [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) = ( 1r ‘ 𝑄 ) ) → 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) |
| 150 |
149
|
oveq2d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑣 ( .r ‘ 𝑄 ) [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) = ( 1r ‘ 𝑄 ) ) → ( 𝑣 ( .r ‘ 𝑄 ) 𝑢 ) = ( 𝑣 ( .r ‘ 𝑄 ) [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) ) |
| 151 |
|
simpr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑣 ( .r ‘ 𝑄 ) [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) = ( 1r ‘ 𝑄 ) ) → ( 𝑣 ( .r ‘ 𝑄 ) [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) = ( 1r ‘ 𝑄 ) ) |
| 152 |
150 151
|
eqtrd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑣 ( .r ‘ 𝑄 ) [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) = ( 1r ‘ 𝑄 ) ) → ( 𝑣 ( .r ‘ 𝑄 ) 𝑢 ) = ( 1r ‘ 𝑄 ) ) |
| 153 |
148 152
|
jca |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑣 ( .r ‘ 𝑄 ) [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) = ( 1r ‘ 𝑄 ) ) → ( ( 𝑢 ( .r ‘ 𝑄 ) 𝑣 ) = ( 1r ‘ 𝑄 ) ∧ ( 𝑣 ( .r ‘ 𝑄 ) 𝑢 ) = ( 1r ‘ 𝑄 ) ) ) |
| 154 |
153
|
anasss |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) ∧ ( 𝑣 ∈ ( Base ‘ 𝑄 ) ∧ ( 𝑣 ( .r ‘ 𝑄 ) [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) = ( 1r ‘ 𝑄 ) ) ) → ( ( 𝑢 ( .r ‘ 𝑄 ) 𝑣 ) = ( 1r ‘ 𝑄 ) ∧ ( 𝑣 ( .r ‘ 𝑄 ) 𝑢 ) = ( 1r ‘ 𝑄 ) ) ) |
| 155 |
1 2 113 117 116 119 145
|
qsdrngilem |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) → ∃ 𝑣 ∈ ( Base ‘ 𝑄 ) ( 𝑣 ( .r ‘ 𝑄 ) [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) = ( 1r ‘ 𝑄 ) ) |
| 156 |
154 155
|
reximddv |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) → ∃ 𝑣 ∈ ( Base ‘ 𝑄 ) ( ( 𝑢 ( .r ‘ 𝑄 ) 𝑣 ) = ( 1r ‘ 𝑄 ) ∧ ( 𝑣 ( .r ‘ 𝑄 ) 𝑢 ) = ( 1r ‘ 𝑄 ) ) ) |
| 157 |
37 46
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) → 𝑢 ∈ ( ( Base ‘ 𝑅 ) / ( 𝑅 ~QG 𝑀 ) ) ) |
| 158 |
|
elqsi |
⊢ ( 𝑢 ∈ ( ( Base ‘ 𝑅 ) / ( 𝑅 ~QG 𝑀 ) ) → ∃ 𝑥 ∈ ( Base ‘ 𝑅 ) 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) |
| 159 |
157 158
|
syl |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) → ∃ 𝑥 ∈ ( Base ‘ 𝑅 ) 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) |
| 160 |
156 159
|
r19.29a |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) → ∃ 𝑣 ∈ ( Base ‘ 𝑄 ) ( ( 𝑢 ( .r ‘ 𝑄 ) 𝑣 ) = ( 1r ‘ 𝑄 ) ∧ ( 𝑣 ( .r ‘ 𝑄 ) 𝑢 ) = ( 1r ‘ 𝑄 ) ) ) |
| 161 |
160
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ∃ 𝑣 ∈ ( Base ‘ 𝑄 ) ( ( 𝑢 ( .r ‘ 𝑄 ) 𝑣 ) = ( 1r ‘ 𝑄 ) ∧ ( 𝑣 ( .r ‘ 𝑄 ) 𝑢 ) = ( 1r ‘ 𝑄 ) ) ) |
| 162 |
29 26 25 30 31 33
|
isdrng4 |
⊢ ( 𝜑 → ( 𝑄 ∈ DivRing ↔ ( ( 1r ‘ 𝑄 ) ≠ ( 0g ‘ 𝑄 ) ∧ ∀ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ∃ 𝑣 ∈ ( Base ‘ 𝑄 ) ( ( 𝑢 ( .r ‘ 𝑄 ) 𝑣 ) = ( 1r ‘ 𝑄 ) ∧ ( 𝑣 ( .r ‘ 𝑄 ) 𝑢 ) = ( 1r ‘ 𝑄 ) ) ) ) ) |
| 163 |
28 161 162
|
mpbir2and |
⊢ ( 𝜑 → 𝑄 ∈ DivRing ) |