| Step | Hyp | Ref | Expression | 
						
							| 1 |  | opprqus.b | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 2 |  | opprqus.o | ⊢ 𝑂  =  ( oppr ‘ 𝑅 ) | 
						
							| 3 |  | opprqus.q | ⊢ 𝑄  =  ( 𝑅  /s  ( 𝑅  ~QG  𝐼 ) ) | 
						
							| 4 |  | opprqus1r.r | ⊢ ( 𝜑  →  𝑅  ∈  Ring ) | 
						
							| 5 |  | opprqus1r.i | ⊢ ( 𝜑  →  𝐼  ∈  ( 2Ideal ‘ 𝑅 ) ) | 
						
							| 6 |  | eqid | ⊢ ( Base ‘ ( oppr ‘ 𝑄 ) )  =  ( Base ‘ ( oppr ‘ 𝑄 ) ) | 
						
							| 7 |  | fvexd | ⊢ ( 𝜑  →  ( oppr ‘ 𝑄 )  ∈  V ) | 
						
							| 8 |  | ovexd | ⊢ ( 𝜑  →  ( 𝑂  /s  ( 𝑂  ~QG  𝐼 ) )  ∈  V ) | 
						
							| 9 | 5 | 2idllidld | ⊢ ( 𝜑  →  𝐼  ∈  ( LIdeal ‘ 𝑅 ) ) | 
						
							| 10 |  | eqid | ⊢ ( LIdeal ‘ 𝑅 )  =  ( LIdeal ‘ 𝑅 ) | 
						
							| 11 | 1 10 | lidlss | ⊢ ( 𝐼  ∈  ( LIdeal ‘ 𝑅 )  →  𝐼  ⊆  𝐵 ) | 
						
							| 12 | 9 11 | syl | ⊢ ( 𝜑  →  𝐼  ⊆  𝐵 ) | 
						
							| 13 | 1 2 3 4 12 | opprqusbas | ⊢ ( 𝜑  →  ( Base ‘ ( oppr ‘ 𝑄 ) )  =  ( Base ‘ ( 𝑂  /s  ( 𝑂  ~QG  𝐼 ) ) ) ) | 
						
							| 14 | 4 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ ( oppr ‘ 𝑄 ) ) )  ∧  𝑦  ∈  ( Base ‘ ( oppr ‘ 𝑄 ) ) )  →  𝑅  ∈  Ring ) | 
						
							| 15 | 5 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ ( oppr ‘ 𝑄 ) ) )  ∧  𝑦  ∈  ( Base ‘ ( oppr ‘ 𝑄 ) ) )  →  𝐼  ∈  ( 2Ideal ‘ 𝑅 ) ) | 
						
							| 16 |  | eqid | ⊢ ( Base ‘ 𝑄 )  =  ( Base ‘ 𝑄 ) | 
						
							| 17 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ ( oppr ‘ 𝑄 ) ) )  →  𝑥  ∈  ( Base ‘ ( oppr ‘ 𝑄 ) ) ) | 
						
							| 18 |  | eqid | ⊢ ( oppr ‘ 𝑄 )  =  ( oppr ‘ 𝑄 ) | 
						
							| 19 | 18 16 | opprbas | ⊢ ( Base ‘ 𝑄 )  =  ( Base ‘ ( oppr ‘ 𝑄 ) ) | 
						
							| 20 | 17 19 | eleqtrrdi | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ ( oppr ‘ 𝑄 ) ) )  →  𝑥  ∈  ( Base ‘ 𝑄 ) ) | 
						
							| 21 | 20 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ ( oppr ‘ 𝑄 ) ) )  ∧  𝑦  ∈  ( Base ‘ ( oppr ‘ 𝑄 ) ) )  →  𝑥  ∈  ( Base ‘ 𝑄 ) ) | 
						
							| 22 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( Base ‘ ( oppr ‘ 𝑄 ) ) )  →  𝑦  ∈  ( Base ‘ ( oppr ‘ 𝑄 ) ) ) | 
						
							| 23 | 22 19 | eleqtrrdi | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( Base ‘ ( oppr ‘ 𝑄 ) ) )  →  𝑦  ∈  ( Base ‘ 𝑄 ) ) | 
						
							| 24 | 23 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ ( oppr ‘ 𝑄 ) ) )  ∧  𝑦  ∈  ( Base ‘ ( oppr ‘ 𝑄 ) ) )  →  𝑦  ∈  ( Base ‘ 𝑄 ) ) | 
						
							| 25 | 1 2 3 14 15 16 21 24 | opprqusmulr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ ( oppr ‘ 𝑄 ) ) )  ∧  𝑦  ∈  ( Base ‘ ( oppr ‘ 𝑄 ) ) )  →  ( 𝑥 ( .r ‘ ( oppr ‘ 𝑄 ) ) 𝑦 )  =  ( 𝑥 ( .r ‘ ( 𝑂  /s  ( 𝑂  ~QG  𝐼 ) ) ) 𝑦 ) ) | 
						
							| 26 | 6 7 8 13 25 | urpropd | ⊢ ( 𝜑  →  ( 1r ‘ ( oppr ‘ 𝑄 ) )  =  ( 1r ‘ ( 𝑂  /s  ( 𝑂  ~QG  𝐼 ) ) ) ) |