| Step |
Hyp |
Ref |
Expression |
| 1 |
|
opprqus.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 2 |
|
opprqus.o |
⊢ 𝑂 = ( oppr ‘ 𝑅 ) |
| 3 |
|
opprqus.q |
⊢ 𝑄 = ( 𝑅 /s ( 𝑅 ~QG 𝐼 ) ) |
| 4 |
|
opprqus1r.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 5 |
|
opprqus1r.i |
⊢ ( 𝜑 → 𝐼 ∈ ( 2Ideal ‘ 𝑅 ) ) |
| 6 |
|
eqid |
⊢ ( Base ‘ ( oppr ‘ 𝑄 ) ) = ( Base ‘ ( oppr ‘ 𝑄 ) ) |
| 7 |
|
fvexd |
⊢ ( 𝜑 → ( oppr ‘ 𝑄 ) ∈ V ) |
| 8 |
|
ovexd |
⊢ ( 𝜑 → ( 𝑂 /s ( 𝑂 ~QG 𝐼 ) ) ∈ V ) |
| 9 |
5
|
2idllidld |
⊢ ( 𝜑 → 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) |
| 10 |
|
eqid |
⊢ ( LIdeal ‘ 𝑅 ) = ( LIdeal ‘ 𝑅 ) |
| 11 |
1 10
|
lidlss |
⊢ ( 𝐼 ∈ ( LIdeal ‘ 𝑅 ) → 𝐼 ⊆ 𝐵 ) |
| 12 |
9 11
|
syl |
⊢ ( 𝜑 → 𝐼 ⊆ 𝐵 ) |
| 13 |
1 2 3 4 12
|
opprqusbas |
⊢ ( 𝜑 → ( Base ‘ ( oppr ‘ 𝑄 ) ) = ( Base ‘ ( 𝑂 /s ( 𝑂 ~QG 𝐼 ) ) ) ) |
| 14 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ ( oppr ‘ 𝑄 ) ) ) ∧ 𝑦 ∈ ( Base ‘ ( oppr ‘ 𝑄 ) ) ) → 𝑅 ∈ Ring ) |
| 15 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ ( oppr ‘ 𝑄 ) ) ) ∧ 𝑦 ∈ ( Base ‘ ( oppr ‘ 𝑄 ) ) ) → 𝐼 ∈ ( 2Ideal ‘ 𝑅 ) ) |
| 16 |
|
eqid |
⊢ ( Base ‘ 𝑄 ) = ( Base ‘ 𝑄 ) |
| 17 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ ( oppr ‘ 𝑄 ) ) ) → 𝑥 ∈ ( Base ‘ ( oppr ‘ 𝑄 ) ) ) |
| 18 |
|
eqid |
⊢ ( oppr ‘ 𝑄 ) = ( oppr ‘ 𝑄 ) |
| 19 |
18 16
|
opprbas |
⊢ ( Base ‘ 𝑄 ) = ( Base ‘ ( oppr ‘ 𝑄 ) ) |
| 20 |
17 19
|
eleqtrrdi |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ ( oppr ‘ 𝑄 ) ) ) → 𝑥 ∈ ( Base ‘ 𝑄 ) ) |
| 21 |
20
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ ( oppr ‘ 𝑄 ) ) ) ∧ 𝑦 ∈ ( Base ‘ ( oppr ‘ 𝑄 ) ) ) → 𝑥 ∈ ( Base ‘ 𝑄 ) ) |
| 22 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( Base ‘ ( oppr ‘ 𝑄 ) ) ) → 𝑦 ∈ ( Base ‘ ( oppr ‘ 𝑄 ) ) ) |
| 23 |
22 19
|
eleqtrrdi |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( Base ‘ ( oppr ‘ 𝑄 ) ) ) → 𝑦 ∈ ( Base ‘ 𝑄 ) ) |
| 24 |
23
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ ( oppr ‘ 𝑄 ) ) ) ∧ 𝑦 ∈ ( Base ‘ ( oppr ‘ 𝑄 ) ) ) → 𝑦 ∈ ( Base ‘ 𝑄 ) ) |
| 25 |
1 2 3 14 15 16 21 24
|
opprqusmulr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ ( oppr ‘ 𝑄 ) ) ) ∧ 𝑦 ∈ ( Base ‘ ( oppr ‘ 𝑄 ) ) ) → ( 𝑥 ( .r ‘ ( oppr ‘ 𝑄 ) ) 𝑦 ) = ( 𝑥 ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝐼 ) ) ) 𝑦 ) ) |
| 26 |
6 7 8 13 25
|
urpropd |
⊢ ( 𝜑 → ( 1r ‘ ( oppr ‘ 𝑄 ) ) = ( 1r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝐼 ) ) ) ) |