| Step |
Hyp |
Ref |
Expression |
| 1 |
|
opprqus.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 2 |
|
opprqus.o |
⊢ 𝑂 = ( oppr ‘ 𝑅 ) |
| 3 |
|
opprqus.q |
⊢ 𝑄 = ( 𝑅 /s ( 𝑅 ~QG 𝐼 ) ) |
| 4 |
|
opprqus1r.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 5 |
|
opprqus1r.i |
⊢ ( 𝜑 → 𝐼 ∈ ( 2Ideal ‘ 𝑅 ) ) |
| 6 |
|
opprqusmulr.e |
⊢ 𝐸 = ( Base ‘ 𝑄 ) |
| 7 |
|
opprqusmulr.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐸 ) |
| 8 |
|
opprqusmulr.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐸 ) |
| 9 |
|
eqid |
⊢ ( .r ‘ 𝑄 ) = ( .r ‘ 𝑄 ) |
| 10 |
|
eqid |
⊢ ( oppr ‘ 𝑄 ) = ( oppr ‘ 𝑄 ) |
| 11 |
|
eqid |
⊢ ( .r ‘ ( oppr ‘ 𝑄 ) ) = ( .r ‘ ( oppr ‘ 𝑄 ) ) |
| 12 |
6 9 10 11
|
opprmul |
⊢ ( 𝑋 ( .r ‘ ( oppr ‘ 𝑄 ) ) 𝑌 ) = ( 𝑌 ( .r ‘ 𝑄 ) 𝑋 ) |
| 13 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
| 14 |
4
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) ∧ 𝑋 = [ 𝑝 ] ( 𝑅 ~QG 𝐼 ) ) ∧ 𝑞 ∈ 𝐵 ) ∧ 𝑌 = [ 𝑞 ] ( 𝑅 ~QG 𝐼 ) ) → 𝑅 ∈ Ring ) |
| 15 |
5
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) ∧ 𝑋 = [ 𝑝 ] ( 𝑅 ~QG 𝐼 ) ) ∧ 𝑞 ∈ 𝐵 ) ∧ 𝑌 = [ 𝑞 ] ( 𝑅 ~QG 𝐼 ) ) → 𝐼 ∈ ( 2Ideal ‘ 𝑅 ) ) |
| 16 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) ∧ 𝑋 = [ 𝑝 ] ( 𝑅 ~QG 𝐼 ) ) ∧ 𝑞 ∈ 𝐵 ) ∧ 𝑌 = [ 𝑞 ] ( 𝑅 ~QG 𝐼 ) ) → 𝑞 ∈ 𝐵 ) |
| 17 |
|
simp-4r |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) ∧ 𝑋 = [ 𝑝 ] ( 𝑅 ~QG 𝐼 ) ) ∧ 𝑞 ∈ 𝐵 ) ∧ 𝑌 = [ 𝑞 ] ( 𝑅 ~QG 𝐼 ) ) → 𝑝 ∈ 𝐵 ) |
| 18 |
3 1 13 9 14 15 16 17
|
qusmul2idl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) ∧ 𝑋 = [ 𝑝 ] ( 𝑅 ~QG 𝐼 ) ) ∧ 𝑞 ∈ 𝐵 ) ∧ 𝑌 = [ 𝑞 ] ( 𝑅 ~QG 𝐼 ) ) → ( [ 𝑞 ] ( 𝑅 ~QG 𝐼 ) ( .r ‘ 𝑄 ) [ 𝑝 ] ( 𝑅 ~QG 𝐼 ) ) = [ ( 𝑞 ( .r ‘ 𝑅 ) 𝑝 ) ] ( 𝑅 ~QG 𝐼 ) ) |
| 19 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) ∧ 𝑋 = [ 𝑝 ] ( 𝑅 ~QG 𝐼 ) ) ∧ 𝑞 ∈ 𝐵 ) ∧ 𝑌 = [ 𝑞 ] ( 𝑅 ~QG 𝐼 ) ) → 𝑌 = [ 𝑞 ] ( 𝑅 ~QG 𝐼 ) ) |
| 20 |
|
simpllr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) ∧ 𝑋 = [ 𝑝 ] ( 𝑅 ~QG 𝐼 ) ) ∧ 𝑞 ∈ 𝐵 ) ∧ 𝑌 = [ 𝑞 ] ( 𝑅 ~QG 𝐼 ) ) → 𝑋 = [ 𝑝 ] ( 𝑅 ~QG 𝐼 ) ) |
| 21 |
19 20
|
oveq12d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) ∧ 𝑋 = [ 𝑝 ] ( 𝑅 ~QG 𝐼 ) ) ∧ 𝑞 ∈ 𝐵 ) ∧ 𝑌 = [ 𝑞 ] ( 𝑅 ~QG 𝐼 ) ) → ( 𝑌 ( .r ‘ 𝑄 ) 𝑋 ) = ( [ 𝑞 ] ( 𝑅 ~QG 𝐼 ) ( .r ‘ 𝑄 ) [ 𝑝 ] ( 𝑅 ~QG 𝐼 ) ) ) |
| 22 |
|
eqid |
⊢ ( 𝑂 /s ( 𝑂 ~QG 𝐼 ) ) = ( 𝑂 /s ( 𝑂 ~QG 𝐼 ) ) |
| 23 |
2 1
|
opprbas |
⊢ 𝐵 = ( Base ‘ 𝑂 ) |
| 24 |
|
eqid |
⊢ ( .r ‘ 𝑂 ) = ( .r ‘ 𝑂 ) |
| 25 |
|
eqid |
⊢ ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝐼 ) ) ) = ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝐼 ) ) ) |
| 26 |
2
|
opprring |
⊢ ( 𝑅 ∈ Ring → 𝑂 ∈ Ring ) |
| 27 |
4 26
|
syl |
⊢ ( 𝜑 → 𝑂 ∈ Ring ) |
| 28 |
27
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) ∧ 𝑋 = [ 𝑝 ] ( 𝑅 ~QG 𝐼 ) ) ∧ 𝑞 ∈ 𝐵 ) ∧ 𝑌 = [ 𝑞 ] ( 𝑅 ~QG 𝐼 ) ) → 𝑂 ∈ Ring ) |
| 29 |
2 4
|
oppr2idl |
⊢ ( 𝜑 → ( 2Ideal ‘ 𝑅 ) = ( 2Ideal ‘ 𝑂 ) ) |
| 30 |
5 29
|
eleqtrd |
⊢ ( 𝜑 → 𝐼 ∈ ( 2Ideal ‘ 𝑂 ) ) |
| 31 |
30
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) ∧ 𝑋 = [ 𝑝 ] ( 𝑅 ~QG 𝐼 ) ) ∧ 𝑞 ∈ 𝐵 ) ∧ 𝑌 = [ 𝑞 ] ( 𝑅 ~QG 𝐼 ) ) → 𝐼 ∈ ( 2Ideal ‘ 𝑂 ) ) |
| 32 |
22 23 24 25 28 31 17 16
|
qusmul2idl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) ∧ 𝑋 = [ 𝑝 ] ( 𝑅 ~QG 𝐼 ) ) ∧ 𝑞 ∈ 𝐵 ) ∧ 𝑌 = [ 𝑞 ] ( 𝑅 ~QG 𝐼 ) ) → ( [ 𝑝 ] ( 𝑂 ~QG 𝐼 ) ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝐼 ) ) ) [ 𝑞 ] ( 𝑂 ~QG 𝐼 ) ) = [ ( 𝑝 ( .r ‘ 𝑂 ) 𝑞 ) ] ( 𝑂 ~QG 𝐼 ) ) |
| 33 |
5
|
2idllidld |
⊢ ( 𝜑 → 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) |
| 34 |
|
eqid |
⊢ ( LIdeal ‘ 𝑅 ) = ( LIdeal ‘ 𝑅 ) |
| 35 |
1 34
|
lidlss |
⊢ ( 𝐼 ∈ ( LIdeal ‘ 𝑅 ) → 𝐼 ⊆ 𝐵 ) |
| 36 |
33 35
|
syl |
⊢ ( 𝜑 → 𝐼 ⊆ 𝐵 ) |
| 37 |
2 1
|
oppreqg |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ⊆ 𝐵 ) → ( 𝑅 ~QG 𝐼 ) = ( 𝑂 ~QG 𝐼 ) ) |
| 38 |
4 36 37
|
syl2anc |
⊢ ( 𝜑 → ( 𝑅 ~QG 𝐼 ) = ( 𝑂 ~QG 𝐼 ) ) |
| 39 |
38
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) ∧ 𝑋 = [ 𝑝 ] ( 𝑅 ~QG 𝐼 ) ) ∧ 𝑞 ∈ 𝐵 ) ∧ 𝑌 = [ 𝑞 ] ( 𝑅 ~QG 𝐼 ) ) → ( 𝑅 ~QG 𝐼 ) = ( 𝑂 ~QG 𝐼 ) ) |
| 40 |
39
|
eceq2d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) ∧ 𝑋 = [ 𝑝 ] ( 𝑅 ~QG 𝐼 ) ) ∧ 𝑞 ∈ 𝐵 ) ∧ 𝑌 = [ 𝑞 ] ( 𝑅 ~QG 𝐼 ) ) → [ 𝑝 ] ( 𝑅 ~QG 𝐼 ) = [ 𝑝 ] ( 𝑂 ~QG 𝐼 ) ) |
| 41 |
20 40
|
eqtrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) ∧ 𝑋 = [ 𝑝 ] ( 𝑅 ~QG 𝐼 ) ) ∧ 𝑞 ∈ 𝐵 ) ∧ 𝑌 = [ 𝑞 ] ( 𝑅 ~QG 𝐼 ) ) → 𝑋 = [ 𝑝 ] ( 𝑂 ~QG 𝐼 ) ) |
| 42 |
39
|
eceq2d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) ∧ 𝑋 = [ 𝑝 ] ( 𝑅 ~QG 𝐼 ) ) ∧ 𝑞 ∈ 𝐵 ) ∧ 𝑌 = [ 𝑞 ] ( 𝑅 ~QG 𝐼 ) ) → [ 𝑞 ] ( 𝑅 ~QG 𝐼 ) = [ 𝑞 ] ( 𝑂 ~QG 𝐼 ) ) |
| 43 |
19 42
|
eqtrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) ∧ 𝑋 = [ 𝑝 ] ( 𝑅 ~QG 𝐼 ) ) ∧ 𝑞 ∈ 𝐵 ) ∧ 𝑌 = [ 𝑞 ] ( 𝑅 ~QG 𝐼 ) ) → 𝑌 = [ 𝑞 ] ( 𝑂 ~QG 𝐼 ) ) |
| 44 |
41 43
|
oveq12d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) ∧ 𝑋 = [ 𝑝 ] ( 𝑅 ~QG 𝐼 ) ) ∧ 𝑞 ∈ 𝐵 ) ∧ 𝑌 = [ 𝑞 ] ( 𝑅 ~QG 𝐼 ) ) → ( 𝑋 ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝐼 ) ) ) 𝑌 ) = ( [ 𝑝 ] ( 𝑂 ~QG 𝐼 ) ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝐼 ) ) ) [ 𝑞 ] ( 𝑂 ~QG 𝐼 ) ) ) |
| 45 |
1 13 2 24
|
opprmul |
⊢ ( 𝑝 ( .r ‘ 𝑂 ) 𝑞 ) = ( 𝑞 ( .r ‘ 𝑅 ) 𝑝 ) |
| 46 |
45
|
a1i |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) ∧ 𝑋 = [ 𝑝 ] ( 𝑅 ~QG 𝐼 ) ) ∧ 𝑞 ∈ 𝐵 ) ∧ 𝑌 = [ 𝑞 ] ( 𝑅 ~QG 𝐼 ) ) → ( 𝑝 ( .r ‘ 𝑂 ) 𝑞 ) = ( 𝑞 ( .r ‘ 𝑅 ) 𝑝 ) ) |
| 47 |
46
|
eceq1d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) ∧ 𝑋 = [ 𝑝 ] ( 𝑅 ~QG 𝐼 ) ) ∧ 𝑞 ∈ 𝐵 ) ∧ 𝑌 = [ 𝑞 ] ( 𝑅 ~QG 𝐼 ) ) → [ ( 𝑝 ( .r ‘ 𝑂 ) 𝑞 ) ] ( 𝑅 ~QG 𝐼 ) = [ ( 𝑞 ( .r ‘ 𝑅 ) 𝑝 ) ] ( 𝑅 ~QG 𝐼 ) ) |
| 48 |
39
|
eceq2d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) ∧ 𝑋 = [ 𝑝 ] ( 𝑅 ~QG 𝐼 ) ) ∧ 𝑞 ∈ 𝐵 ) ∧ 𝑌 = [ 𝑞 ] ( 𝑅 ~QG 𝐼 ) ) → [ ( 𝑝 ( .r ‘ 𝑂 ) 𝑞 ) ] ( 𝑅 ~QG 𝐼 ) = [ ( 𝑝 ( .r ‘ 𝑂 ) 𝑞 ) ] ( 𝑂 ~QG 𝐼 ) ) |
| 49 |
47 48
|
eqtr3d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) ∧ 𝑋 = [ 𝑝 ] ( 𝑅 ~QG 𝐼 ) ) ∧ 𝑞 ∈ 𝐵 ) ∧ 𝑌 = [ 𝑞 ] ( 𝑅 ~QG 𝐼 ) ) → [ ( 𝑞 ( .r ‘ 𝑅 ) 𝑝 ) ] ( 𝑅 ~QG 𝐼 ) = [ ( 𝑝 ( .r ‘ 𝑂 ) 𝑞 ) ] ( 𝑂 ~QG 𝐼 ) ) |
| 50 |
32 44 49
|
3eqtr4d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) ∧ 𝑋 = [ 𝑝 ] ( 𝑅 ~QG 𝐼 ) ) ∧ 𝑞 ∈ 𝐵 ) ∧ 𝑌 = [ 𝑞 ] ( 𝑅 ~QG 𝐼 ) ) → ( 𝑋 ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝐼 ) ) ) 𝑌 ) = [ ( 𝑞 ( .r ‘ 𝑅 ) 𝑝 ) ] ( 𝑅 ~QG 𝐼 ) ) |
| 51 |
18 21 50
|
3eqtr4d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) ∧ 𝑋 = [ 𝑝 ] ( 𝑅 ~QG 𝐼 ) ) ∧ 𝑞 ∈ 𝐵 ) ∧ 𝑌 = [ 𝑞 ] ( 𝑅 ~QG 𝐼 ) ) → ( 𝑌 ( .r ‘ 𝑄 ) 𝑋 ) = ( 𝑋 ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝐼 ) ) ) 𝑌 ) ) |
| 52 |
10 6
|
opprbas |
⊢ 𝐸 = ( Base ‘ ( oppr ‘ 𝑄 ) ) |
| 53 |
8 52
|
eleqtrdi |
⊢ ( 𝜑 → 𝑌 ∈ ( Base ‘ ( oppr ‘ 𝑄 ) ) ) |
| 54 |
53
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) ∧ 𝑋 = [ 𝑝 ] ( 𝑅 ~QG 𝐼 ) ) → 𝑌 ∈ ( Base ‘ ( oppr ‘ 𝑄 ) ) ) |
| 55 |
3
|
a1i |
⊢ ( 𝜑 → 𝑄 = ( 𝑅 /s ( 𝑅 ~QG 𝐼 ) ) ) |
| 56 |
1
|
a1i |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝑅 ) ) |
| 57 |
|
ovexd |
⊢ ( 𝜑 → ( 𝑅 ~QG 𝐼 ) ∈ V ) |
| 58 |
55 56 57 4
|
qusbas |
⊢ ( 𝜑 → ( 𝐵 / ( 𝑅 ~QG 𝐼 ) ) = ( Base ‘ 𝑄 ) ) |
| 59 |
6 52
|
eqtr3i |
⊢ ( Base ‘ 𝑄 ) = ( Base ‘ ( oppr ‘ 𝑄 ) ) |
| 60 |
58 59
|
eqtr2di |
⊢ ( 𝜑 → ( Base ‘ ( oppr ‘ 𝑄 ) ) = ( 𝐵 / ( 𝑅 ~QG 𝐼 ) ) ) |
| 61 |
60
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) ∧ 𝑋 = [ 𝑝 ] ( 𝑅 ~QG 𝐼 ) ) → ( Base ‘ ( oppr ‘ 𝑄 ) ) = ( 𝐵 / ( 𝑅 ~QG 𝐼 ) ) ) |
| 62 |
54 61
|
eleqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) ∧ 𝑋 = [ 𝑝 ] ( 𝑅 ~QG 𝐼 ) ) → 𝑌 ∈ ( 𝐵 / ( 𝑅 ~QG 𝐼 ) ) ) |
| 63 |
|
elqsi |
⊢ ( 𝑌 ∈ ( 𝐵 / ( 𝑅 ~QG 𝐼 ) ) → ∃ 𝑞 ∈ 𝐵 𝑌 = [ 𝑞 ] ( 𝑅 ~QG 𝐼 ) ) |
| 64 |
62 63
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) ∧ 𝑋 = [ 𝑝 ] ( 𝑅 ~QG 𝐼 ) ) → ∃ 𝑞 ∈ 𝐵 𝑌 = [ 𝑞 ] ( 𝑅 ~QG 𝐼 ) ) |
| 65 |
51 64
|
r19.29a |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) ∧ 𝑋 = [ 𝑝 ] ( 𝑅 ~QG 𝐼 ) ) → ( 𝑌 ( .r ‘ 𝑄 ) 𝑋 ) = ( 𝑋 ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝐼 ) ) ) 𝑌 ) ) |
| 66 |
7 52
|
eleqtrdi |
⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ ( oppr ‘ 𝑄 ) ) ) |
| 67 |
66 60
|
eleqtrd |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝐵 / ( 𝑅 ~QG 𝐼 ) ) ) |
| 68 |
|
elqsi |
⊢ ( 𝑋 ∈ ( 𝐵 / ( 𝑅 ~QG 𝐼 ) ) → ∃ 𝑝 ∈ 𝐵 𝑋 = [ 𝑝 ] ( 𝑅 ~QG 𝐼 ) ) |
| 69 |
67 68
|
syl |
⊢ ( 𝜑 → ∃ 𝑝 ∈ 𝐵 𝑋 = [ 𝑝 ] ( 𝑅 ~QG 𝐼 ) ) |
| 70 |
65 69
|
r19.29a |
⊢ ( 𝜑 → ( 𝑌 ( .r ‘ 𝑄 ) 𝑋 ) = ( 𝑋 ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝐼 ) ) ) 𝑌 ) ) |
| 71 |
12 70
|
eqtrid |
⊢ ( 𝜑 → ( 𝑋 ( .r ‘ ( oppr ‘ 𝑄 ) ) 𝑌 ) = ( 𝑋 ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝐼 ) ) ) 𝑌 ) ) |