| Step |
Hyp |
Ref |
Expression |
| 1 |
|
qusmul2idl.h |
⊢ 𝑄 = ( 𝑅 /s ( 𝑅 ~QG 𝐼 ) ) |
| 2 |
|
qusmul2idl.v |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 3 |
|
qusmul2idl.p |
⊢ · = ( .r ‘ 𝑅 ) |
| 4 |
|
qusmul2idl.a |
⊢ × = ( .r ‘ 𝑄 ) |
| 5 |
|
qusmul2idl.1 |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 6 |
|
qusmul2idl.2 |
⊢ ( 𝜑 → 𝐼 ∈ ( 2Ideal ‘ 𝑅 ) ) |
| 7 |
|
qusmul2idl.3 |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 8 |
|
qusmul2idl.4 |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
| 9 |
1
|
a1i |
⊢ ( 𝜑 → 𝑄 = ( 𝑅 /s ( 𝑅 ~QG 𝐼 ) ) ) |
| 10 |
2
|
a1i |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝑅 ) ) |
| 11 |
6
|
2idllidld |
⊢ ( 𝜑 → 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) |
| 12 |
|
eqid |
⊢ ( LIdeal ‘ 𝑅 ) = ( LIdeal ‘ 𝑅 ) |
| 13 |
12
|
lidlsubg |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) → 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ) |
| 14 |
5 11 13
|
syl2anc |
⊢ ( 𝜑 → 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ) |
| 15 |
|
eqid |
⊢ ( 𝑅 ~QG 𝐼 ) = ( 𝑅 ~QG 𝐼 ) |
| 16 |
2 15
|
eqger |
⊢ ( 𝐼 ∈ ( SubGrp ‘ 𝑅 ) → ( 𝑅 ~QG 𝐼 ) Er 𝐵 ) |
| 17 |
14 16
|
syl |
⊢ ( 𝜑 → ( 𝑅 ~QG 𝐼 ) Er 𝐵 ) |
| 18 |
|
eqid |
⊢ ( 2Ideal ‘ 𝑅 ) = ( 2Ideal ‘ 𝑅 ) |
| 19 |
2 15 18 3
|
2idlcpbl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ ( 2Ideal ‘ 𝑅 ) ) → ( ( 𝑥 ( 𝑅 ~QG 𝐼 ) 𝑦 ∧ 𝑧 ( 𝑅 ~QG 𝐼 ) 𝑡 ) → ( 𝑥 · 𝑧 ) ( 𝑅 ~QG 𝐼 ) ( 𝑦 · 𝑡 ) ) ) |
| 20 |
5 6 19
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑥 ( 𝑅 ~QG 𝐼 ) 𝑦 ∧ 𝑧 ( 𝑅 ~QG 𝐼 ) 𝑡 ) → ( 𝑥 · 𝑧 ) ( 𝑅 ~QG 𝐼 ) ( 𝑦 · 𝑡 ) ) ) |
| 21 |
2 3
|
ringcl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵 ) → ( 𝑝 · 𝑞 ) ∈ 𝐵 ) |
| 22 |
21
|
3expb |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵 ) ) → ( 𝑝 · 𝑞 ) ∈ 𝐵 ) |
| 23 |
5 22
|
sylan |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵 ) ) → ( 𝑝 · 𝑞 ) ∈ 𝐵 ) |
| 24 |
23
|
caovclg |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑡 ∈ 𝐵 ) ) → ( 𝑦 · 𝑡 ) ∈ 𝐵 ) |
| 25 |
9 10 17 5 20 24 3 4
|
qusmulval |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( [ 𝑋 ] ( 𝑅 ~QG 𝐼 ) × [ 𝑌 ] ( 𝑅 ~QG 𝐼 ) ) = [ ( 𝑋 · 𝑌 ) ] ( 𝑅 ~QG 𝐼 ) ) |
| 26 |
7 8 25
|
mpd3an23 |
⊢ ( 𝜑 → ( [ 𝑋 ] ( 𝑅 ~QG 𝐼 ) × [ 𝑌 ] ( 𝑅 ~QG 𝐼 ) ) = [ ( 𝑋 · 𝑌 ) ] ( 𝑅 ~QG 𝐼 ) ) |