| Step |
Hyp |
Ref |
Expression |
| 1 |
|
qusmul2idl.h |
|
| 2 |
|
qusmul2idl.v |
|
| 3 |
|
qusmul2idl.p |
|
| 4 |
|
qusmul2idl.a |
|
| 5 |
|
qusmul2idl.1 |
|
| 6 |
|
qusmul2idl.2 |
|
| 7 |
|
qusmul2idl.3 |
|
| 8 |
|
qusmul2idl.4 |
|
| 9 |
1
|
a1i |
|
| 10 |
2
|
a1i |
|
| 11 |
6
|
2idllidld |
|
| 12 |
|
eqid |
|
| 13 |
12
|
lidlsubg |
|
| 14 |
5 11 13
|
syl2anc |
|
| 15 |
|
eqid |
|
| 16 |
2 15
|
eqger |
|
| 17 |
14 16
|
syl |
|
| 18 |
|
eqid |
|
| 19 |
2 15 18 3
|
2idlcpbl |
|
| 20 |
5 6 19
|
syl2anc |
|
| 21 |
2 3
|
ringcl |
|
| 22 |
21
|
3expb |
|
| 23 |
5 22
|
sylan |
|
| 24 |
23
|
caovclg |
|
| 25 |
9 10 17 5 20 24 3 4
|
qusmulval |
|
| 26 |
7 8 25
|
mpd3an23 |
|