| Step |
Hyp |
Ref |
Expression |
| 1 |
|
opprqus.b |
|- B = ( Base ` R ) |
| 2 |
|
opprqus.o |
|- O = ( oppR ` R ) |
| 3 |
|
opprqus.q |
|- Q = ( R /s ( R ~QG I ) ) |
| 4 |
|
opprqus1r.r |
|- ( ph -> R e. Ring ) |
| 5 |
|
opprqus1r.i |
|- ( ph -> I e. ( 2Ideal ` R ) ) |
| 6 |
|
opprqusmulr.e |
|- E = ( Base ` Q ) |
| 7 |
|
opprqusmulr.x |
|- ( ph -> X e. E ) |
| 8 |
|
opprqusmulr.y |
|- ( ph -> Y e. E ) |
| 9 |
|
eqid |
|- ( .r ` Q ) = ( .r ` Q ) |
| 10 |
|
eqid |
|- ( oppR ` Q ) = ( oppR ` Q ) |
| 11 |
|
eqid |
|- ( .r ` ( oppR ` Q ) ) = ( .r ` ( oppR ` Q ) ) |
| 12 |
6 9 10 11
|
opprmul |
|- ( X ( .r ` ( oppR ` Q ) ) Y ) = ( Y ( .r ` Q ) X ) |
| 13 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
| 14 |
4
|
ad4antr |
|- ( ( ( ( ( ph /\ p e. B ) /\ X = [ p ] ( R ~QG I ) ) /\ q e. B ) /\ Y = [ q ] ( R ~QG I ) ) -> R e. Ring ) |
| 15 |
5
|
ad4antr |
|- ( ( ( ( ( ph /\ p e. B ) /\ X = [ p ] ( R ~QG I ) ) /\ q e. B ) /\ Y = [ q ] ( R ~QG I ) ) -> I e. ( 2Ideal ` R ) ) |
| 16 |
|
simplr |
|- ( ( ( ( ( ph /\ p e. B ) /\ X = [ p ] ( R ~QG I ) ) /\ q e. B ) /\ Y = [ q ] ( R ~QG I ) ) -> q e. B ) |
| 17 |
|
simp-4r |
|- ( ( ( ( ( ph /\ p e. B ) /\ X = [ p ] ( R ~QG I ) ) /\ q e. B ) /\ Y = [ q ] ( R ~QG I ) ) -> p e. B ) |
| 18 |
3 1 13 9 14 15 16 17
|
qusmul2idl |
|- ( ( ( ( ( ph /\ p e. B ) /\ X = [ p ] ( R ~QG I ) ) /\ q e. B ) /\ Y = [ q ] ( R ~QG I ) ) -> ( [ q ] ( R ~QG I ) ( .r ` Q ) [ p ] ( R ~QG I ) ) = [ ( q ( .r ` R ) p ) ] ( R ~QG I ) ) |
| 19 |
|
simpr |
|- ( ( ( ( ( ph /\ p e. B ) /\ X = [ p ] ( R ~QG I ) ) /\ q e. B ) /\ Y = [ q ] ( R ~QG I ) ) -> Y = [ q ] ( R ~QG I ) ) |
| 20 |
|
simpllr |
|- ( ( ( ( ( ph /\ p e. B ) /\ X = [ p ] ( R ~QG I ) ) /\ q e. B ) /\ Y = [ q ] ( R ~QG I ) ) -> X = [ p ] ( R ~QG I ) ) |
| 21 |
19 20
|
oveq12d |
|- ( ( ( ( ( ph /\ p e. B ) /\ X = [ p ] ( R ~QG I ) ) /\ q e. B ) /\ Y = [ q ] ( R ~QG I ) ) -> ( Y ( .r ` Q ) X ) = ( [ q ] ( R ~QG I ) ( .r ` Q ) [ p ] ( R ~QG I ) ) ) |
| 22 |
|
eqid |
|- ( O /s ( O ~QG I ) ) = ( O /s ( O ~QG I ) ) |
| 23 |
2 1
|
opprbas |
|- B = ( Base ` O ) |
| 24 |
|
eqid |
|- ( .r ` O ) = ( .r ` O ) |
| 25 |
|
eqid |
|- ( .r ` ( O /s ( O ~QG I ) ) ) = ( .r ` ( O /s ( O ~QG I ) ) ) |
| 26 |
2
|
opprring |
|- ( R e. Ring -> O e. Ring ) |
| 27 |
4 26
|
syl |
|- ( ph -> O e. Ring ) |
| 28 |
27
|
ad4antr |
|- ( ( ( ( ( ph /\ p e. B ) /\ X = [ p ] ( R ~QG I ) ) /\ q e. B ) /\ Y = [ q ] ( R ~QG I ) ) -> O e. Ring ) |
| 29 |
2 4
|
oppr2idl |
|- ( ph -> ( 2Ideal ` R ) = ( 2Ideal ` O ) ) |
| 30 |
5 29
|
eleqtrd |
|- ( ph -> I e. ( 2Ideal ` O ) ) |
| 31 |
30
|
ad4antr |
|- ( ( ( ( ( ph /\ p e. B ) /\ X = [ p ] ( R ~QG I ) ) /\ q e. B ) /\ Y = [ q ] ( R ~QG I ) ) -> I e. ( 2Ideal ` O ) ) |
| 32 |
22 23 24 25 28 31 17 16
|
qusmul2idl |
|- ( ( ( ( ( ph /\ p e. B ) /\ X = [ p ] ( R ~QG I ) ) /\ q e. B ) /\ Y = [ q ] ( R ~QG I ) ) -> ( [ p ] ( O ~QG I ) ( .r ` ( O /s ( O ~QG I ) ) ) [ q ] ( O ~QG I ) ) = [ ( p ( .r ` O ) q ) ] ( O ~QG I ) ) |
| 33 |
5
|
2idllidld |
|- ( ph -> I e. ( LIdeal ` R ) ) |
| 34 |
|
eqid |
|- ( LIdeal ` R ) = ( LIdeal ` R ) |
| 35 |
1 34
|
lidlss |
|- ( I e. ( LIdeal ` R ) -> I C_ B ) |
| 36 |
33 35
|
syl |
|- ( ph -> I C_ B ) |
| 37 |
2 1
|
oppreqg |
|- ( ( R e. Ring /\ I C_ B ) -> ( R ~QG I ) = ( O ~QG I ) ) |
| 38 |
4 36 37
|
syl2anc |
|- ( ph -> ( R ~QG I ) = ( O ~QG I ) ) |
| 39 |
38
|
ad4antr |
|- ( ( ( ( ( ph /\ p e. B ) /\ X = [ p ] ( R ~QG I ) ) /\ q e. B ) /\ Y = [ q ] ( R ~QG I ) ) -> ( R ~QG I ) = ( O ~QG I ) ) |
| 40 |
39
|
eceq2d |
|- ( ( ( ( ( ph /\ p e. B ) /\ X = [ p ] ( R ~QG I ) ) /\ q e. B ) /\ Y = [ q ] ( R ~QG I ) ) -> [ p ] ( R ~QG I ) = [ p ] ( O ~QG I ) ) |
| 41 |
20 40
|
eqtrd |
|- ( ( ( ( ( ph /\ p e. B ) /\ X = [ p ] ( R ~QG I ) ) /\ q e. B ) /\ Y = [ q ] ( R ~QG I ) ) -> X = [ p ] ( O ~QG I ) ) |
| 42 |
39
|
eceq2d |
|- ( ( ( ( ( ph /\ p e. B ) /\ X = [ p ] ( R ~QG I ) ) /\ q e. B ) /\ Y = [ q ] ( R ~QG I ) ) -> [ q ] ( R ~QG I ) = [ q ] ( O ~QG I ) ) |
| 43 |
19 42
|
eqtrd |
|- ( ( ( ( ( ph /\ p e. B ) /\ X = [ p ] ( R ~QG I ) ) /\ q e. B ) /\ Y = [ q ] ( R ~QG I ) ) -> Y = [ q ] ( O ~QG I ) ) |
| 44 |
41 43
|
oveq12d |
|- ( ( ( ( ( ph /\ p e. B ) /\ X = [ p ] ( R ~QG I ) ) /\ q e. B ) /\ Y = [ q ] ( R ~QG I ) ) -> ( X ( .r ` ( O /s ( O ~QG I ) ) ) Y ) = ( [ p ] ( O ~QG I ) ( .r ` ( O /s ( O ~QG I ) ) ) [ q ] ( O ~QG I ) ) ) |
| 45 |
1 13 2 24
|
opprmul |
|- ( p ( .r ` O ) q ) = ( q ( .r ` R ) p ) |
| 46 |
45
|
a1i |
|- ( ( ( ( ( ph /\ p e. B ) /\ X = [ p ] ( R ~QG I ) ) /\ q e. B ) /\ Y = [ q ] ( R ~QG I ) ) -> ( p ( .r ` O ) q ) = ( q ( .r ` R ) p ) ) |
| 47 |
46
|
eceq1d |
|- ( ( ( ( ( ph /\ p e. B ) /\ X = [ p ] ( R ~QG I ) ) /\ q e. B ) /\ Y = [ q ] ( R ~QG I ) ) -> [ ( p ( .r ` O ) q ) ] ( R ~QG I ) = [ ( q ( .r ` R ) p ) ] ( R ~QG I ) ) |
| 48 |
39
|
eceq2d |
|- ( ( ( ( ( ph /\ p e. B ) /\ X = [ p ] ( R ~QG I ) ) /\ q e. B ) /\ Y = [ q ] ( R ~QG I ) ) -> [ ( p ( .r ` O ) q ) ] ( R ~QG I ) = [ ( p ( .r ` O ) q ) ] ( O ~QG I ) ) |
| 49 |
47 48
|
eqtr3d |
|- ( ( ( ( ( ph /\ p e. B ) /\ X = [ p ] ( R ~QG I ) ) /\ q e. B ) /\ Y = [ q ] ( R ~QG I ) ) -> [ ( q ( .r ` R ) p ) ] ( R ~QG I ) = [ ( p ( .r ` O ) q ) ] ( O ~QG I ) ) |
| 50 |
32 44 49
|
3eqtr4d |
|- ( ( ( ( ( ph /\ p e. B ) /\ X = [ p ] ( R ~QG I ) ) /\ q e. B ) /\ Y = [ q ] ( R ~QG I ) ) -> ( X ( .r ` ( O /s ( O ~QG I ) ) ) Y ) = [ ( q ( .r ` R ) p ) ] ( R ~QG I ) ) |
| 51 |
18 21 50
|
3eqtr4d |
|- ( ( ( ( ( ph /\ p e. B ) /\ X = [ p ] ( R ~QG I ) ) /\ q e. B ) /\ Y = [ q ] ( R ~QG I ) ) -> ( Y ( .r ` Q ) X ) = ( X ( .r ` ( O /s ( O ~QG I ) ) ) Y ) ) |
| 52 |
10 6
|
opprbas |
|- E = ( Base ` ( oppR ` Q ) ) |
| 53 |
8 52
|
eleqtrdi |
|- ( ph -> Y e. ( Base ` ( oppR ` Q ) ) ) |
| 54 |
53
|
ad2antrr |
|- ( ( ( ph /\ p e. B ) /\ X = [ p ] ( R ~QG I ) ) -> Y e. ( Base ` ( oppR ` Q ) ) ) |
| 55 |
3
|
a1i |
|- ( ph -> Q = ( R /s ( R ~QG I ) ) ) |
| 56 |
1
|
a1i |
|- ( ph -> B = ( Base ` R ) ) |
| 57 |
|
ovexd |
|- ( ph -> ( R ~QG I ) e. _V ) |
| 58 |
55 56 57 4
|
qusbas |
|- ( ph -> ( B /. ( R ~QG I ) ) = ( Base ` Q ) ) |
| 59 |
6 52
|
eqtr3i |
|- ( Base ` Q ) = ( Base ` ( oppR ` Q ) ) |
| 60 |
58 59
|
eqtr2di |
|- ( ph -> ( Base ` ( oppR ` Q ) ) = ( B /. ( R ~QG I ) ) ) |
| 61 |
60
|
ad2antrr |
|- ( ( ( ph /\ p e. B ) /\ X = [ p ] ( R ~QG I ) ) -> ( Base ` ( oppR ` Q ) ) = ( B /. ( R ~QG I ) ) ) |
| 62 |
54 61
|
eleqtrd |
|- ( ( ( ph /\ p e. B ) /\ X = [ p ] ( R ~QG I ) ) -> Y e. ( B /. ( R ~QG I ) ) ) |
| 63 |
|
elqsi |
|- ( Y e. ( B /. ( R ~QG I ) ) -> E. q e. B Y = [ q ] ( R ~QG I ) ) |
| 64 |
62 63
|
syl |
|- ( ( ( ph /\ p e. B ) /\ X = [ p ] ( R ~QG I ) ) -> E. q e. B Y = [ q ] ( R ~QG I ) ) |
| 65 |
51 64
|
r19.29a |
|- ( ( ( ph /\ p e. B ) /\ X = [ p ] ( R ~QG I ) ) -> ( Y ( .r ` Q ) X ) = ( X ( .r ` ( O /s ( O ~QG I ) ) ) Y ) ) |
| 66 |
7 52
|
eleqtrdi |
|- ( ph -> X e. ( Base ` ( oppR ` Q ) ) ) |
| 67 |
66 60
|
eleqtrd |
|- ( ph -> X e. ( B /. ( R ~QG I ) ) ) |
| 68 |
|
elqsi |
|- ( X e. ( B /. ( R ~QG I ) ) -> E. p e. B X = [ p ] ( R ~QG I ) ) |
| 69 |
67 68
|
syl |
|- ( ph -> E. p e. B X = [ p ] ( R ~QG I ) ) |
| 70 |
65 69
|
r19.29a |
|- ( ph -> ( Y ( .r ` Q ) X ) = ( X ( .r ` ( O /s ( O ~QG I ) ) ) Y ) ) |
| 71 |
12 70
|
eqtrid |
|- ( ph -> ( X ( .r ` ( oppR ` Q ) ) Y ) = ( X ( .r ` ( O /s ( O ~QG I ) ) ) Y ) ) |