| Step | Hyp | Ref | Expression | 
						
							| 1 |  | opprqus.b |  |-  B = ( Base ` R ) | 
						
							| 2 |  | opprqus.o |  |-  O = ( oppR ` R ) | 
						
							| 3 |  | opprqus.q |  |-  Q = ( R /s ( R ~QG I ) ) | 
						
							| 4 |  | opprqus1r.r |  |-  ( ph -> R e. Ring ) | 
						
							| 5 |  | opprqus1r.i |  |-  ( ph -> I e. ( 2Ideal ` R ) ) | 
						
							| 6 |  | eqid |  |-  ( Base ` ( oppR ` Q ) ) = ( Base ` ( oppR ` Q ) ) | 
						
							| 7 |  | fvexd |  |-  ( ph -> ( oppR ` Q ) e. _V ) | 
						
							| 8 |  | ovexd |  |-  ( ph -> ( O /s ( O ~QG I ) ) e. _V ) | 
						
							| 9 | 5 | 2idllidld |  |-  ( ph -> I e. ( LIdeal ` R ) ) | 
						
							| 10 |  | eqid |  |-  ( LIdeal ` R ) = ( LIdeal ` R ) | 
						
							| 11 | 1 10 | lidlss |  |-  ( I e. ( LIdeal ` R ) -> I C_ B ) | 
						
							| 12 | 9 11 | syl |  |-  ( ph -> I C_ B ) | 
						
							| 13 | 1 2 3 4 12 | opprqusbas |  |-  ( ph -> ( Base ` ( oppR ` Q ) ) = ( Base ` ( O /s ( O ~QG I ) ) ) ) | 
						
							| 14 | 4 | ad2antrr |  |-  ( ( ( ph /\ x e. ( Base ` ( oppR ` Q ) ) ) /\ y e. ( Base ` ( oppR ` Q ) ) ) -> R e. Ring ) | 
						
							| 15 | 5 | ad2antrr |  |-  ( ( ( ph /\ x e. ( Base ` ( oppR ` Q ) ) ) /\ y e. ( Base ` ( oppR ` Q ) ) ) -> I e. ( 2Ideal ` R ) ) | 
						
							| 16 |  | eqid |  |-  ( Base ` Q ) = ( Base ` Q ) | 
						
							| 17 |  | simpr |  |-  ( ( ph /\ x e. ( Base ` ( oppR ` Q ) ) ) -> x e. ( Base ` ( oppR ` Q ) ) ) | 
						
							| 18 |  | eqid |  |-  ( oppR ` Q ) = ( oppR ` Q ) | 
						
							| 19 | 18 16 | opprbas |  |-  ( Base ` Q ) = ( Base ` ( oppR ` Q ) ) | 
						
							| 20 | 17 19 | eleqtrrdi |  |-  ( ( ph /\ x e. ( Base ` ( oppR ` Q ) ) ) -> x e. ( Base ` Q ) ) | 
						
							| 21 | 20 | adantr |  |-  ( ( ( ph /\ x e. ( Base ` ( oppR ` Q ) ) ) /\ y e. ( Base ` ( oppR ` Q ) ) ) -> x e. ( Base ` Q ) ) | 
						
							| 22 |  | simpr |  |-  ( ( ph /\ y e. ( Base ` ( oppR ` Q ) ) ) -> y e. ( Base ` ( oppR ` Q ) ) ) | 
						
							| 23 | 22 19 | eleqtrrdi |  |-  ( ( ph /\ y e. ( Base ` ( oppR ` Q ) ) ) -> y e. ( Base ` Q ) ) | 
						
							| 24 | 23 | adantlr |  |-  ( ( ( ph /\ x e. ( Base ` ( oppR ` Q ) ) ) /\ y e. ( Base ` ( oppR ` Q ) ) ) -> y e. ( Base ` Q ) ) | 
						
							| 25 | 1 2 3 14 15 16 21 24 | opprqusmulr |  |-  ( ( ( ph /\ x e. ( Base ` ( oppR ` Q ) ) ) /\ y e. ( Base ` ( oppR ` Q ) ) ) -> ( x ( .r ` ( oppR ` Q ) ) y ) = ( x ( .r ` ( O /s ( O ~QG I ) ) ) y ) ) | 
						
							| 26 | 6 7 8 13 25 | urpropd |  |-  ( ph -> ( 1r ` ( oppR ` Q ) ) = ( 1r ` ( O /s ( O ~QG I ) ) ) ) |