| Step |
Hyp |
Ref |
Expression |
| 1 |
|
opprqus.b |
|- B = ( Base ` R ) |
| 2 |
|
opprqus.o |
|- O = ( oppR ` R ) |
| 3 |
|
opprqus.q |
|- Q = ( R /s ( R ~QG I ) ) |
| 4 |
|
opprqus1r.r |
|- ( ph -> R e. Ring ) |
| 5 |
|
opprqus1r.i |
|- ( ph -> I e. ( 2Ideal ` R ) ) |
| 6 |
|
eqid |
|- ( Base ` ( oppR ` Q ) ) = ( Base ` ( oppR ` Q ) ) |
| 7 |
|
fvexd |
|- ( ph -> ( oppR ` Q ) e. _V ) |
| 8 |
|
ovexd |
|- ( ph -> ( O /s ( O ~QG I ) ) e. _V ) |
| 9 |
5
|
2idllidld |
|- ( ph -> I e. ( LIdeal ` R ) ) |
| 10 |
|
eqid |
|- ( LIdeal ` R ) = ( LIdeal ` R ) |
| 11 |
1 10
|
lidlss |
|- ( I e. ( LIdeal ` R ) -> I C_ B ) |
| 12 |
9 11
|
syl |
|- ( ph -> I C_ B ) |
| 13 |
1 2 3 4 12
|
opprqusbas |
|- ( ph -> ( Base ` ( oppR ` Q ) ) = ( Base ` ( O /s ( O ~QG I ) ) ) ) |
| 14 |
4
|
ad2antrr |
|- ( ( ( ph /\ x e. ( Base ` ( oppR ` Q ) ) ) /\ y e. ( Base ` ( oppR ` Q ) ) ) -> R e. Ring ) |
| 15 |
5
|
ad2antrr |
|- ( ( ( ph /\ x e. ( Base ` ( oppR ` Q ) ) ) /\ y e. ( Base ` ( oppR ` Q ) ) ) -> I e. ( 2Ideal ` R ) ) |
| 16 |
|
eqid |
|- ( Base ` Q ) = ( Base ` Q ) |
| 17 |
|
simpr |
|- ( ( ph /\ x e. ( Base ` ( oppR ` Q ) ) ) -> x e. ( Base ` ( oppR ` Q ) ) ) |
| 18 |
|
eqid |
|- ( oppR ` Q ) = ( oppR ` Q ) |
| 19 |
18 16
|
opprbas |
|- ( Base ` Q ) = ( Base ` ( oppR ` Q ) ) |
| 20 |
17 19
|
eleqtrrdi |
|- ( ( ph /\ x e. ( Base ` ( oppR ` Q ) ) ) -> x e. ( Base ` Q ) ) |
| 21 |
20
|
adantr |
|- ( ( ( ph /\ x e. ( Base ` ( oppR ` Q ) ) ) /\ y e. ( Base ` ( oppR ` Q ) ) ) -> x e. ( Base ` Q ) ) |
| 22 |
|
simpr |
|- ( ( ph /\ y e. ( Base ` ( oppR ` Q ) ) ) -> y e. ( Base ` ( oppR ` Q ) ) ) |
| 23 |
22 19
|
eleqtrrdi |
|- ( ( ph /\ y e. ( Base ` ( oppR ` Q ) ) ) -> y e. ( Base ` Q ) ) |
| 24 |
23
|
adantlr |
|- ( ( ( ph /\ x e. ( Base ` ( oppR ` Q ) ) ) /\ y e. ( Base ` ( oppR ` Q ) ) ) -> y e. ( Base ` Q ) ) |
| 25 |
1 2 3 14 15 16 21 24
|
opprqusmulr |
|- ( ( ( ph /\ x e. ( Base ` ( oppR ` Q ) ) ) /\ y e. ( Base ` ( oppR ` Q ) ) ) -> ( x ( .r ` ( oppR ` Q ) ) y ) = ( x ( .r ` ( O /s ( O ~QG I ) ) ) y ) ) |
| 26 |
6 7 8 13 25
|
urpropd |
|- ( ph -> ( 1r ` ( oppR ` Q ) ) = ( 1r ` ( O /s ( O ~QG I ) ) ) ) |