| Step |
Hyp |
Ref |
Expression |
| 1 |
|
opprqus.b |
|- B = ( Base ` R ) |
| 2 |
|
opprqus.o |
|- O = ( oppR ` R ) |
| 3 |
|
opprqus.q |
|- Q = ( R /s ( R ~QG I ) ) |
| 4 |
|
opprqusbas.r |
|- ( ph -> R e. V ) |
| 5 |
|
opprqusbas.i |
|- ( ph -> I C_ B ) |
| 6 |
|
eqid |
|- ( oppR ` Q ) = ( oppR ` Q ) |
| 7 |
|
eqid |
|- ( Base ` Q ) = ( Base ` Q ) |
| 8 |
6 7
|
opprbas |
|- ( Base ` Q ) = ( Base ` ( oppR ` Q ) ) |
| 9 |
2 1
|
oppreqg |
|- ( ( R e. V /\ I C_ B ) -> ( R ~QG I ) = ( O ~QG I ) ) |
| 10 |
4 5 9
|
syl2anc |
|- ( ph -> ( R ~QG I ) = ( O ~QG I ) ) |
| 11 |
10
|
qseq2d |
|- ( ph -> ( B /. ( R ~QG I ) ) = ( B /. ( O ~QG I ) ) ) |
| 12 |
3
|
a1i |
|- ( ph -> Q = ( R /s ( R ~QG I ) ) ) |
| 13 |
1
|
a1i |
|- ( ph -> B = ( Base ` R ) ) |
| 14 |
|
ovexd |
|- ( ph -> ( R ~QG I ) e. _V ) |
| 15 |
12 13 14 4
|
qusbas |
|- ( ph -> ( B /. ( R ~QG I ) ) = ( Base ` Q ) ) |
| 16 |
|
eqidd |
|- ( ph -> ( O /s ( O ~QG I ) ) = ( O /s ( O ~QG I ) ) ) |
| 17 |
2 1
|
opprbas |
|- B = ( Base ` O ) |
| 18 |
17
|
a1i |
|- ( ph -> B = ( Base ` O ) ) |
| 19 |
|
ovexd |
|- ( ph -> ( O ~QG I ) e. _V ) |
| 20 |
2
|
fvexi |
|- O e. _V |
| 21 |
20
|
a1i |
|- ( ph -> O e. _V ) |
| 22 |
16 18 19 21
|
qusbas |
|- ( ph -> ( B /. ( O ~QG I ) ) = ( Base ` ( O /s ( O ~QG I ) ) ) ) |
| 23 |
11 15 22
|
3eqtr3d |
|- ( ph -> ( Base ` Q ) = ( Base ` ( O /s ( O ~QG I ) ) ) ) |
| 24 |
8 23
|
eqtr3id |
|- ( ph -> ( Base ` ( oppR ` Q ) ) = ( Base ` ( O /s ( O ~QG I ) ) ) ) |