| Step | Hyp | Ref | Expression | 
						
							| 1 |  | opprqus.b |  |-  B = ( Base ` R ) | 
						
							| 2 |  | opprqus.o |  |-  O = ( oppR ` R ) | 
						
							| 3 |  | opprqus.q |  |-  Q = ( R /s ( R ~QG I ) ) | 
						
							| 4 |  | opprqusbas.r |  |-  ( ph -> R e. V ) | 
						
							| 5 |  | opprqusbas.i |  |-  ( ph -> I C_ B ) | 
						
							| 6 |  | eqid |  |-  ( oppR ` Q ) = ( oppR ` Q ) | 
						
							| 7 |  | eqid |  |-  ( Base ` Q ) = ( Base ` Q ) | 
						
							| 8 | 6 7 | opprbas |  |-  ( Base ` Q ) = ( Base ` ( oppR ` Q ) ) | 
						
							| 9 | 2 1 | oppreqg |  |-  ( ( R e. V /\ I C_ B ) -> ( R ~QG I ) = ( O ~QG I ) ) | 
						
							| 10 | 4 5 9 | syl2anc |  |-  ( ph -> ( R ~QG I ) = ( O ~QG I ) ) | 
						
							| 11 | 10 | qseq2d |  |-  ( ph -> ( B /. ( R ~QG I ) ) = ( B /. ( O ~QG I ) ) ) | 
						
							| 12 | 3 | a1i |  |-  ( ph -> Q = ( R /s ( R ~QG I ) ) ) | 
						
							| 13 | 1 | a1i |  |-  ( ph -> B = ( Base ` R ) ) | 
						
							| 14 |  | ovexd |  |-  ( ph -> ( R ~QG I ) e. _V ) | 
						
							| 15 | 12 13 14 4 | qusbas |  |-  ( ph -> ( B /. ( R ~QG I ) ) = ( Base ` Q ) ) | 
						
							| 16 |  | eqidd |  |-  ( ph -> ( O /s ( O ~QG I ) ) = ( O /s ( O ~QG I ) ) ) | 
						
							| 17 | 2 1 | opprbas |  |-  B = ( Base ` O ) | 
						
							| 18 | 17 | a1i |  |-  ( ph -> B = ( Base ` O ) ) | 
						
							| 19 |  | ovexd |  |-  ( ph -> ( O ~QG I ) e. _V ) | 
						
							| 20 | 2 | fvexi |  |-  O e. _V | 
						
							| 21 | 20 | a1i |  |-  ( ph -> O e. _V ) | 
						
							| 22 | 16 18 19 21 | qusbas |  |-  ( ph -> ( B /. ( O ~QG I ) ) = ( Base ` ( O /s ( O ~QG I ) ) ) ) | 
						
							| 23 | 11 15 22 | 3eqtr3d |  |-  ( ph -> ( Base ` Q ) = ( Base ` ( O /s ( O ~QG I ) ) ) ) | 
						
							| 24 | 8 23 | eqtr3id |  |-  ( ph -> ( Base ` ( oppR ` Q ) ) = ( Base ` ( O /s ( O ~QG I ) ) ) ) |