| Step | Hyp | Ref | Expression | 
						
							| 1 |  | opprqus.b | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 2 |  | opprqus.o | ⊢ 𝑂  =  ( oppr ‘ 𝑅 ) | 
						
							| 3 |  | opprqus.q | ⊢ 𝑄  =  ( 𝑅  /s  ( 𝑅  ~QG  𝐼 ) ) | 
						
							| 4 |  | opprqusbas.r | ⊢ ( 𝜑  →  𝑅  ∈  𝑉 ) | 
						
							| 5 |  | opprqusbas.i | ⊢ ( 𝜑  →  𝐼  ⊆  𝐵 ) | 
						
							| 6 |  | eqid | ⊢ ( oppr ‘ 𝑄 )  =  ( oppr ‘ 𝑄 ) | 
						
							| 7 |  | eqid | ⊢ ( Base ‘ 𝑄 )  =  ( Base ‘ 𝑄 ) | 
						
							| 8 | 6 7 | opprbas | ⊢ ( Base ‘ 𝑄 )  =  ( Base ‘ ( oppr ‘ 𝑄 ) ) | 
						
							| 9 | 2 1 | oppreqg | ⊢ ( ( 𝑅  ∈  𝑉  ∧  𝐼  ⊆  𝐵 )  →  ( 𝑅  ~QG  𝐼 )  =  ( 𝑂  ~QG  𝐼 ) ) | 
						
							| 10 | 4 5 9 | syl2anc | ⊢ ( 𝜑  →  ( 𝑅  ~QG  𝐼 )  =  ( 𝑂  ~QG  𝐼 ) ) | 
						
							| 11 | 10 | qseq2d | ⊢ ( 𝜑  →  ( 𝐵  /  ( 𝑅  ~QG  𝐼 ) )  =  ( 𝐵  /  ( 𝑂  ~QG  𝐼 ) ) ) | 
						
							| 12 | 3 | a1i | ⊢ ( 𝜑  →  𝑄  =  ( 𝑅  /s  ( 𝑅  ~QG  𝐼 ) ) ) | 
						
							| 13 | 1 | a1i | ⊢ ( 𝜑  →  𝐵  =  ( Base ‘ 𝑅 ) ) | 
						
							| 14 |  | ovexd | ⊢ ( 𝜑  →  ( 𝑅  ~QG  𝐼 )  ∈  V ) | 
						
							| 15 | 12 13 14 4 | qusbas | ⊢ ( 𝜑  →  ( 𝐵  /  ( 𝑅  ~QG  𝐼 ) )  =  ( Base ‘ 𝑄 ) ) | 
						
							| 16 |  | eqidd | ⊢ ( 𝜑  →  ( 𝑂  /s  ( 𝑂  ~QG  𝐼 ) )  =  ( 𝑂  /s  ( 𝑂  ~QG  𝐼 ) ) ) | 
						
							| 17 | 2 1 | opprbas | ⊢ 𝐵  =  ( Base ‘ 𝑂 ) | 
						
							| 18 | 17 | a1i | ⊢ ( 𝜑  →  𝐵  =  ( Base ‘ 𝑂 ) ) | 
						
							| 19 |  | ovexd | ⊢ ( 𝜑  →  ( 𝑂  ~QG  𝐼 )  ∈  V ) | 
						
							| 20 | 2 | fvexi | ⊢ 𝑂  ∈  V | 
						
							| 21 | 20 | a1i | ⊢ ( 𝜑  →  𝑂  ∈  V ) | 
						
							| 22 | 16 18 19 21 | qusbas | ⊢ ( 𝜑  →  ( 𝐵  /  ( 𝑂  ~QG  𝐼 ) )  =  ( Base ‘ ( 𝑂  /s  ( 𝑂  ~QG  𝐼 ) ) ) ) | 
						
							| 23 | 11 15 22 | 3eqtr3d | ⊢ ( 𝜑  →  ( Base ‘ 𝑄 )  =  ( Base ‘ ( 𝑂  /s  ( 𝑂  ~QG  𝐼 ) ) ) ) | 
						
							| 24 | 8 23 | eqtr3id | ⊢ ( 𝜑  →  ( Base ‘ ( oppr ‘ 𝑄 ) )  =  ( Base ‘ ( 𝑂  /s  ( 𝑂  ~QG  𝐼 ) ) ) ) |