| Step |
Hyp |
Ref |
Expression |
| 1 |
|
opprqus.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 2 |
|
opprqus.o |
⊢ 𝑂 = ( oppr ‘ 𝑅 ) |
| 3 |
|
opprqus.q |
⊢ 𝑄 = ( 𝑅 /s ( 𝑅 ~QG 𝐼 ) ) |
| 4 |
|
opprqus.i |
⊢ ( 𝜑 → 𝐼 ∈ ( NrmSGrp ‘ 𝑅 ) ) |
| 5 |
|
opprqusplusg.e |
⊢ 𝐸 = ( Base ‘ 𝑄 ) |
| 6 |
|
opprqusplusg.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐸 ) |
| 7 |
|
opprqusplusg.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐸 ) |
| 8 |
|
eqid |
⊢ ( oppr ‘ 𝑄 ) = ( oppr ‘ 𝑄 ) |
| 9 |
|
eqid |
⊢ ( +g ‘ 𝑄 ) = ( +g ‘ 𝑄 ) |
| 10 |
8 9
|
oppradd |
⊢ ( +g ‘ 𝑄 ) = ( +g ‘ ( oppr ‘ 𝑄 ) ) |
| 11 |
10
|
oveqi |
⊢ ( 𝑋 ( +g ‘ 𝑄 ) 𝑌 ) = ( 𝑋 ( +g ‘ ( oppr ‘ 𝑄 ) ) 𝑌 ) |
| 12 |
4
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) ∧ 𝑋 = [ 𝑝 ] ( 𝑅 ~QG 𝐼 ) ) ∧ 𝑞 ∈ 𝐵 ) ∧ 𝑌 = [ 𝑞 ] ( 𝑅 ~QG 𝐼 ) ) → 𝐼 ∈ ( NrmSGrp ‘ 𝑅 ) ) |
| 13 |
|
simp-4r |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) ∧ 𝑋 = [ 𝑝 ] ( 𝑅 ~QG 𝐼 ) ) ∧ 𝑞 ∈ 𝐵 ) ∧ 𝑌 = [ 𝑞 ] ( 𝑅 ~QG 𝐼 ) ) → 𝑝 ∈ 𝐵 ) |
| 14 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) ∧ 𝑋 = [ 𝑝 ] ( 𝑅 ~QG 𝐼 ) ) ∧ 𝑞 ∈ 𝐵 ) ∧ 𝑌 = [ 𝑞 ] ( 𝑅 ~QG 𝐼 ) ) → 𝑞 ∈ 𝐵 ) |
| 15 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
| 16 |
3 1 15 9
|
qusadd |
⊢ ( ( 𝐼 ∈ ( NrmSGrp ‘ 𝑅 ) ∧ 𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵 ) → ( [ 𝑝 ] ( 𝑅 ~QG 𝐼 ) ( +g ‘ 𝑄 ) [ 𝑞 ] ( 𝑅 ~QG 𝐼 ) ) = [ ( 𝑝 ( +g ‘ 𝑅 ) 𝑞 ) ] ( 𝑅 ~QG 𝐼 ) ) |
| 17 |
12 13 14 16
|
syl3anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) ∧ 𝑋 = [ 𝑝 ] ( 𝑅 ~QG 𝐼 ) ) ∧ 𝑞 ∈ 𝐵 ) ∧ 𝑌 = [ 𝑞 ] ( 𝑅 ~QG 𝐼 ) ) → ( [ 𝑝 ] ( 𝑅 ~QG 𝐼 ) ( +g ‘ 𝑄 ) [ 𝑞 ] ( 𝑅 ~QG 𝐼 ) ) = [ ( 𝑝 ( +g ‘ 𝑅 ) 𝑞 ) ] ( 𝑅 ~QG 𝐼 ) ) |
| 18 |
|
simpllr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) ∧ 𝑋 = [ 𝑝 ] ( 𝑅 ~QG 𝐼 ) ) ∧ 𝑞 ∈ 𝐵 ) ∧ 𝑌 = [ 𝑞 ] ( 𝑅 ~QG 𝐼 ) ) → 𝑋 = [ 𝑝 ] ( 𝑅 ~QG 𝐼 ) ) |
| 19 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) ∧ 𝑋 = [ 𝑝 ] ( 𝑅 ~QG 𝐼 ) ) ∧ 𝑞 ∈ 𝐵 ) ∧ 𝑌 = [ 𝑞 ] ( 𝑅 ~QG 𝐼 ) ) → 𝑌 = [ 𝑞 ] ( 𝑅 ~QG 𝐼 ) ) |
| 20 |
18 19
|
oveq12d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) ∧ 𝑋 = [ 𝑝 ] ( 𝑅 ~QG 𝐼 ) ) ∧ 𝑞 ∈ 𝐵 ) ∧ 𝑌 = [ 𝑞 ] ( 𝑅 ~QG 𝐼 ) ) → ( 𝑋 ( +g ‘ 𝑄 ) 𝑌 ) = ( [ 𝑝 ] ( 𝑅 ~QG 𝐼 ) ( +g ‘ 𝑄 ) [ 𝑞 ] ( 𝑅 ~QG 𝐼 ) ) ) |
| 21 |
4
|
elfvexd |
⊢ ( 𝜑 → 𝑅 ∈ V ) |
| 22 |
|
nsgsubg |
⊢ ( 𝐼 ∈ ( NrmSGrp ‘ 𝑅 ) → 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ) |
| 23 |
1
|
subgss |
⊢ ( 𝐼 ∈ ( SubGrp ‘ 𝑅 ) → 𝐼 ⊆ 𝐵 ) |
| 24 |
4 22 23
|
3syl |
⊢ ( 𝜑 → 𝐼 ⊆ 𝐵 ) |
| 25 |
2 1
|
oppreqg |
⊢ ( ( 𝑅 ∈ V ∧ 𝐼 ⊆ 𝐵 ) → ( 𝑅 ~QG 𝐼 ) = ( 𝑂 ~QG 𝐼 ) ) |
| 26 |
21 24 25
|
syl2anc |
⊢ ( 𝜑 → ( 𝑅 ~QG 𝐼 ) = ( 𝑂 ~QG 𝐼 ) ) |
| 27 |
26
|
eceq2d |
⊢ ( 𝜑 → [ 𝑝 ] ( 𝑅 ~QG 𝐼 ) = [ 𝑝 ] ( 𝑂 ~QG 𝐼 ) ) |
| 28 |
26
|
eceq2d |
⊢ ( 𝜑 → [ 𝑞 ] ( 𝑅 ~QG 𝐼 ) = [ 𝑞 ] ( 𝑂 ~QG 𝐼 ) ) |
| 29 |
27 28
|
oveq12d |
⊢ ( 𝜑 → ( [ 𝑝 ] ( 𝑅 ~QG 𝐼 ) ( +g ‘ ( 𝑂 /s ( 𝑂 ~QG 𝐼 ) ) ) [ 𝑞 ] ( 𝑅 ~QG 𝐼 ) ) = ( [ 𝑝 ] ( 𝑂 ~QG 𝐼 ) ( +g ‘ ( 𝑂 /s ( 𝑂 ~QG 𝐼 ) ) ) [ 𝑞 ] ( 𝑂 ~QG 𝐼 ) ) ) |
| 30 |
29
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) ∧ 𝑋 = [ 𝑝 ] ( 𝑅 ~QG 𝐼 ) ) ∧ 𝑞 ∈ 𝐵 ) ∧ 𝑌 = [ 𝑞 ] ( 𝑅 ~QG 𝐼 ) ) → ( [ 𝑝 ] ( 𝑅 ~QG 𝐼 ) ( +g ‘ ( 𝑂 /s ( 𝑂 ~QG 𝐼 ) ) ) [ 𝑞 ] ( 𝑅 ~QG 𝐼 ) ) = ( [ 𝑝 ] ( 𝑂 ~QG 𝐼 ) ( +g ‘ ( 𝑂 /s ( 𝑂 ~QG 𝐼 ) ) ) [ 𝑞 ] ( 𝑂 ~QG 𝐼 ) ) ) |
| 31 |
2
|
opprnsg |
⊢ ( NrmSGrp ‘ 𝑅 ) = ( NrmSGrp ‘ 𝑂 ) |
| 32 |
4 31
|
eleqtrdi |
⊢ ( 𝜑 → 𝐼 ∈ ( NrmSGrp ‘ 𝑂 ) ) |
| 33 |
32
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) ∧ 𝑋 = [ 𝑝 ] ( 𝑅 ~QG 𝐼 ) ) ∧ 𝑞 ∈ 𝐵 ) ∧ 𝑌 = [ 𝑞 ] ( 𝑅 ~QG 𝐼 ) ) → 𝐼 ∈ ( NrmSGrp ‘ 𝑂 ) ) |
| 34 |
13 1
|
eleqtrdi |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) ∧ 𝑋 = [ 𝑝 ] ( 𝑅 ~QG 𝐼 ) ) ∧ 𝑞 ∈ 𝐵 ) ∧ 𝑌 = [ 𝑞 ] ( 𝑅 ~QG 𝐼 ) ) → 𝑝 ∈ ( Base ‘ 𝑅 ) ) |
| 35 |
14 1
|
eleqtrdi |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) ∧ 𝑋 = [ 𝑝 ] ( 𝑅 ~QG 𝐼 ) ) ∧ 𝑞 ∈ 𝐵 ) ∧ 𝑌 = [ 𝑞 ] ( 𝑅 ~QG 𝐼 ) ) → 𝑞 ∈ ( Base ‘ 𝑅 ) ) |
| 36 |
|
eqid |
⊢ ( 𝑂 /s ( 𝑂 ~QG 𝐼 ) ) = ( 𝑂 /s ( 𝑂 ~QG 𝐼 ) ) |
| 37 |
2 1
|
opprbas |
⊢ 𝐵 = ( Base ‘ 𝑂 ) |
| 38 |
1 37
|
eqtr3i |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑂 ) |
| 39 |
2 15
|
oppradd |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑂 ) |
| 40 |
|
eqid |
⊢ ( +g ‘ ( 𝑂 /s ( 𝑂 ~QG 𝐼 ) ) ) = ( +g ‘ ( 𝑂 /s ( 𝑂 ~QG 𝐼 ) ) ) |
| 41 |
36 38 39 40
|
qusadd |
⊢ ( ( 𝐼 ∈ ( NrmSGrp ‘ 𝑂 ) ∧ 𝑝 ∈ ( Base ‘ 𝑅 ) ∧ 𝑞 ∈ ( Base ‘ 𝑅 ) ) → ( [ 𝑝 ] ( 𝑂 ~QG 𝐼 ) ( +g ‘ ( 𝑂 /s ( 𝑂 ~QG 𝐼 ) ) ) [ 𝑞 ] ( 𝑂 ~QG 𝐼 ) ) = [ ( 𝑝 ( +g ‘ 𝑅 ) 𝑞 ) ] ( 𝑂 ~QG 𝐼 ) ) |
| 42 |
33 34 35 41
|
syl3anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) ∧ 𝑋 = [ 𝑝 ] ( 𝑅 ~QG 𝐼 ) ) ∧ 𝑞 ∈ 𝐵 ) ∧ 𝑌 = [ 𝑞 ] ( 𝑅 ~QG 𝐼 ) ) → ( [ 𝑝 ] ( 𝑂 ~QG 𝐼 ) ( +g ‘ ( 𝑂 /s ( 𝑂 ~QG 𝐼 ) ) ) [ 𝑞 ] ( 𝑂 ~QG 𝐼 ) ) = [ ( 𝑝 ( +g ‘ 𝑅 ) 𝑞 ) ] ( 𝑂 ~QG 𝐼 ) ) |
| 43 |
30 42
|
eqtrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) ∧ 𝑋 = [ 𝑝 ] ( 𝑅 ~QG 𝐼 ) ) ∧ 𝑞 ∈ 𝐵 ) ∧ 𝑌 = [ 𝑞 ] ( 𝑅 ~QG 𝐼 ) ) → ( [ 𝑝 ] ( 𝑅 ~QG 𝐼 ) ( +g ‘ ( 𝑂 /s ( 𝑂 ~QG 𝐼 ) ) ) [ 𝑞 ] ( 𝑅 ~QG 𝐼 ) ) = [ ( 𝑝 ( +g ‘ 𝑅 ) 𝑞 ) ] ( 𝑂 ~QG 𝐼 ) ) |
| 44 |
18 19
|
oveq12d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) ∧ 𝑋 = [ 𝑝 ] ( 𝑅 ~QG 𝐼 ) ) ∧ 𝑞 ∈ 𝐵 ) ∧ 𝑌 = [ 𝑞 ] ( 𝑅 ~QG 𝐼 ) ) → ( 𝑋 ( +g ‘ ( 𝑂 /s ( 𝑂 ~QG 𝐼 ) ) ) 𝑌 ) = ( [ 𝑝 ] ( 𝑅 ~QG 𝐼 ) ( +g ‘ ( 𝑂 /s ( 𝑂 ~QG 𝐼 ) ) ) [ 𝑞 ] ( 𝑅 ~QG 𝐼 ) ) ) |
| 45 |
26
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) ∧ 𝑋 = [ 𝑝 ] ( 𝑅 ~QG 𝐼 ) ) ∧ 𝑞 ∈ 𝐵 ) ∧ 𝑌 = [ 𝑞 ] ( 𝑅 ~QG 𝐼 ) ) → ( 𝑅 ~QG 𝐼 ) = ( 𝑂 ~QG 𝐼 ) ) |
| 46 |
45
|
eceq2d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) ∧ 𝑋 = [ 𝑝 ] ( 𝑅 ~QG 𝐼 ) ) ∧ 𝑞 ∈ 𝐵 ) ∧ 𝑌 = [ 𝑞 ] ( 𝑅 ~QG 𝐼 ) ) → [ ( 𝑝 ( +g ‘ 𝑅 ) 𝑞 ) ] ( 𝑅 ~QG 𝐼 ) = [ ( 𝑝 ( +g ‘ 𝑅 ) 𝑞 ) ] ( 𝑂 ~QG 𝐼 ) ) |
| 47 |
43 44 46
|
3eqtr4d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) ∧ 𝑋 = [ 𝑝 ] ( 𝑅 ~QG 𝐼 ) ) ∧ 𝑞 ∈ 𝐵 ) ∧ 𝑌 = [ 𝑞 ] ( 𝑅 ~QG 𝐼 ) ) → ( 𝑋 ( +g ‘ ( 𝑂 /s ( 𝑂 ~QG 𝐼 ) ) ) 𝑌 ) = [ ( 𝑝 ( +g ‘ 𝑅 ) 𝑞 ) ] ( 𝑅 ~QG 𝐼 ) ) |
| 48 |
17 20 47
|
3eqtr4d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) ∧ 𝑋 = [ 𝑝 ] ( 𝑅 ~QG 𝐼 ) ) ∧ 𝑞 ∈ 𝐵 ) ∧ 𝑌 = [ 𝑞 ] ( 𝑅 ~QG 𝐼 ) ) → ( 𝑋 ( +g ‘ 𝑄 ) 𝑌 ) = ( 𝑋 ( +g ‘ ( 𝑂 /s ( 𝑂 ~QG 𝐼 ) ) ) 𝑌 ) ) |
| 49 |
3
|
a1i |
⊢ ( 𝜑 → 𝑄 = ( 𝑅 /s ( 𝑅 ~QG 𝐼 ) ) ) |
| 50 |
1
|
a1i |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝑅 ) ) |
| 51 |
|
ovexd |
⊢ ( 𝜑 → ( 𝑅 ~QG 𝐼 ) ∈ V ) |
| 52 |
49 50 51 21
|
qusbas |
⊢ ( 𝜑 → ( 𝐵 / ( 𝑅 ~QG 𝐼 ) ) = ( Base ‘ 𝑄 ) ) |
| 53 |
5 52
|
eqtr4id |
⊢ ( 𝜑 → 𝐸 = ( 𝐵 / ( 𝑅 ~QG 𝐼 ) ) ) |
| 54 |
7 53
|
eleqtrd |
⊢ ( 𝜑 → 𝑌 ∈ ( 𝐵 / ( 𝑅 ~QG 𝐼 ) ) ) |
| 55 |
54
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) ∧ 𝑋 = [ 𝑝 ] ( 𝑅 ~QG 𝐼 ) ) → 𝑌 ∈ ( 𝐵 / ( 𝑅 ~QG 𝐼 ) ) ) |
| 56 |
|
elqsi |
⊢ ( 𝑌 ∈ ( 𝐵 / ( 𝑅 ~QG 𝐼 ) ) → ∃ 𝑞 ∈ 𝐵 𝑌 = [ 𝑞 ] ( 𝑅 ~QG 𝐼 ) ) |
| 57 |
55 56
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) ∧ 𝑋 = [ 𝑝 ] ( 𝑅 ~QG 𝐼 ) ) → ∃ 𝑞 ∈ 𝐵 𝑌 = [ 𝑞 ] ( 𝑅 ~QG 𝐼 ) ) |
| 58 |
48 57
|
r19.29a |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) ∧ 𝑋 = [ 𝑝 ] ( 𝑅 ~QG 𝐼 ) ) → ( 𝑋 ( +g ‘ 𝑄 ) 𝑌 ) = ( 𝑋 ( +g ‘ ( 𝑂 /s ( 𝑂 ~QG 𝐼 ) ) ) 𝑌 ) ) |
| 59 |
6 53
|
eleqtrd |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝐵 / ( 𝑅 ~QG 𝐼 ) ) ) |
| 60 |
|
elqsi |
⊢ ( 𝑋 ∈ ( 𝐵 / ( 𝑅 ~QG 𝐼 ) ) → ∃ 𝑝 ∈ 𝐵 𝑋 = [ 𝑝 ] ( 𝑅 ~QG 𝐼 ) ) |
| 61 |
59 60
|
syl |
⊢ ( 𝜑 → ∃ 𝑝 ∈ 𝐵 𝑋 = [ 𝑝 ] ( 𝑅 ~QG 𝐼 ) ) |
| 62 |
58 61
|
r19.29a |
⊢ ( 𝜑 → ( 𝑋 ( +g ‘ 𝑄 ) 𝑌 ) = ( 𝑋 ( +g ‘ ( 𝑂 /s ( 𝑂 ~QG 𝐼 ) ) ) 𝑌 ) ) |
| 63 |
11 62
|
eqtr3id |
⊢ ( 𝜑 → ( 𝑋 ( +g ‘ ( oppr ‘ 𝑄 ) ) 𝑌 ) = ( 𝑋 ( +g ‘ ( 𝑂 /s ( 𝑂 ~QG 𝐼 ) ) ) 𝑌 ) ) |