| Step | Hyp | Ref | Expression | 
						
							| 1 |  | opprqus.b | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 2 |  | opprqus.o | ⊢ 𝑂  =  ( oppr ‘ 𝑅 ) | 
						
							| 3 |  | opprqus.q | ⊢ 𝑄  =  ( 𝑅  /s  ( 𝑅  ~QG  𝐼 ) ) | 
						
							| 4 |  | opprqus.i | ⊢ ( 𝜑  →  𝐼  ∈  ( NrmSGrp ‘ 𝑅 ) ) | 
						
							| 5 |  | opprqusplusg.e | ⊢ 𝐸  =  ( Base ‘ 𝑄 ) | 
						
							| 6 |  | opprqusplusg.x | ⊢ ( 𝜑  →  𝑋  ∈  𝐸 ) | 
						
							| 7 |  | opprqusplusg.y | ⊢ ( 𝜑  →  𝑌  ∈  𝐸 ) | 
						
							| 8 |  | eqid | ⊢ ( oppr ‘ 𝑄 )  =  ( oppr ‘ 𝑄 ) | 
						
							| 9 |  | eqid | ⊢ ( +g ‘ 𝑄 )  =  ( +g ‘ 𝑄 ) | 
						
							| 10 | 8 9 | oppradd | ⊢ ( +g ‘ 𝑄 )  =  ( +g ‘ ( oppr ‘ 𝑄 ) ) | 
						
							| 11 | 10 | oveqi | ⊢ ( 𝑋 ( +g ‘ 𝑄 ) 𝑌 )  =  ( 𝑋 ( +g ‘ ( oppr ‘ 𝑄 ) ) 𝑌 ) | 
						
							| 12 | 4 | ad4antr | ⊢ ( ( ( ( ( 𝜑  ∧  𝑝  ∈  𝐵 )  ∧  𝑋  =  [ 𝑝 ] ( 𝑅  ~QG  𝐼 ) )  ∧  𝑞  ∈  𝐵 )  ∧  𝑌  =  [ 𝑞 ] ( 𝑅  ~QG  𝐼 ) )  →  𝐼  ∈  ( NrmSGrp ‘ 𝑅 ) ) | 
						
							| 13 |  | simp-4r | ⊢ ( ( ( ( ( 𝜑  ∧  𝑝  ∈  𝐵 )  ∧  𝑋  =  [ 𝑝 ] ( 𝑅  ~QG  𝐼 ) )  ∧  𝑞  ∈  𝐵 )  ∧  𝑌  =  [ 𝑞 ] ( 𝑅  ~QG  𝐼 ) )  →  𝑝  ∈  𝐵 ) | 
						
							| 14 |  | simplr | ⊢ ( ( ( ( ( 𝜑  ∧  𝑝  ∈  𝐵 )  ∧  𝑋  =  [ 𝑝 ] ( 𝑅  ~QG  𝐼 ) )  ∧  𝑞  ∈  𝐵 )  ∧  𝑌  =  [ 𝑞 ] ( 𝑅  ~QG  𝐼 ) )  →  𝑞  ∈  𝐵 ) | 
						
							| 15 |  | eqid | ⊢ ( +g ‘ 𝑅 )  =  ( +g ‘ 𝑅 ) | 
						
							| 16 | 3 1 15 9 | qusadd | ⊢ ( ( 𝐼  ∈  ( NrmSGrp ‘ 𝑅 )  ∧  𝑝  ∈  𝐵  ∧  𝑞  ∈  𝐵 )  →  ( [ 𝑝 ] ( 𝑅  ~QG  𝐼 ) ( +g ‘ 𝑄 ) [ 𝑞 ] ( 𝑅  ~QG  𝐼 ) )  =  [ ( 𝑝 ( +g ‘ 𝑅 ) 𝑞 ) ] ( 𝑅  ~QG  𝐼 ) ) | 
						
							| 17 | 12 13 14 16 | syl3anc | ⊢ ( ( ( ( ( 𝜑  ∧  𝑝  ∈  𝐵 )  ∧  𝑋  =  [ 𝑝 ] ( 𝑅  ~QG  𝐼 ) )  ∧  𝑞  ∈  𝐵 )  ∧  𝑌  =  [ 𝑞 ] ( 𝑅  ~QG  𝐼 ) )  →  ( [ 𝑝 ] ( 𝑅  ~QG  𝐼 ) ( +g ‘ 𝑄 ) [ 𝑞 ] ( 𝑅  ~QG  𝐼 ) )  =  [ ( 𝑝 ( +g ‘ 𝑅 ) 𝑞 ) ] ( 𝑅  ~QG  𝐼 ) ) | 
						
							| 18 |  | simpllr | ⊢ ( ( ( ( ( 𝜑  ∧  𝑝  ∈  𝐵 )  ∧  𝑋  =  [ 𝑝 ] ( 𝑅  ~QG  𝐼 ) )  ∧  𝑞  ∈  𝐵 )  ∧  𝑌  =  [ 𝑞 ] ( 𝑅  ~QG  𝐼 ) )  →  𝑋  =  [ 𝑝 ] ( 𝑅  ~QG  𝐼 ) ) | 
						
							| 19 |  | simpr | ⊢ ( ( ( ( ( 𝜑  ∧  𝑝  ∈  𝐵 )  ∧  𝑋  =  [ 𝑝 ] ( 𝑅  ~QG  𝐼 ) )  ∧  𝑞  ∈  𝐵 )  ∧  𝑌  =  [ 𝑞 ] ( 𝑅  ~QG  𝐼 ) )  →  𝑌  =  [ 𝑞 ] ( 𝑅  ~QG  𝐼 ) ) | 
						
							| 20 | 18 19 | oveq12d | ⊢ ( ( ( ( ( 𝜑  ∧  𝑝  ∈  𝐵 )  ∧  𝑋  =  [ 𝑝 ] ( 𝑅  ~QG  𝐼 ) )  ∧  𝑞  ∈  𝐵 )  ∧  𝑌  =  [ 𝑞 ] ( 𝑅  ~QG  𝐼 ) )  →  ( 𝑋 ( +g ‘ 𝑄 ) 𝑌 )  =  ( [ 𝑝 ] ( 𝑅  ~QG  𝐼 ) ( +g ‘ 𝑄 ) [ 𝑞 ] ( 𝑅  ~QG  𝐼 ) ) ) | 
						
							| 21 | 4 | elfvexd | ⊢ ( 𝜑  →  𝑅  ∈  V ) | 
						
							| 22 |  | nsgsubg | ⊢ ( 𝐼  ∈  ( NrmSGrp ‘ 𝑅 )  →  𝐼  ∈  ( SubGrp ‘ 𝑅 ) ) | 
						
							| 23 | 1 | subgss | ⊢ ( 𝐼  ∈  ( SubGrp ‘ 𝑅 )  →  𝐼  ⊆  𝐵 ) | 
						
							| 24 | 4 22 23 | 3syl | ⊢ ( 𝜑  →  𝐼  ⊆  𝐵 ) | 
						
							| 25 | 2 1 | oppreqg | ⊢ ( ( 𝑅  ∈  V  ∧  𝐼  ⊆  𝐵 )  →  ( 𝑅  ~QG  𝐼 )  =  ( 𝑂  ~QG  𝐼 ) ) | 
						
							| 26 | 21 24 25 | syl2anc | ⊢ ( 𝜑  →  ( 𝑅  ~QG  𝐼 )  =  ( 𝑂  ~QG  𝐼 ) ) | 
						
							| 27 | 26 | eceq2d | ⊢ ( 𝜑  →  [ 𝑝 ] ( 𝑅  ~QG  𝐼 )  =  [ 𝑝 ] ( 𝑂  ~QG  𝐼 ) ) | 
						
							| 28 | 26 | eceq2d | ⊢ ( 𝜑  →  [ 𝑞 ] ( 𝑅  ~QG  𝐼 )  =  [ 𝑞 ] ( 𝑂  ~QG  𝐼 ) ) | 
						
							| 29 | 27 28 | oveq12d | ⊢ ( 𝜑  →  ( [ 𝑝 ] ( 𝑅  ~QG  𝐼 ) ( +g ‘ ( 𝑂  /s  ( 𝑂  ~QG  𝐼 ) ) ) [ 𝑞 ] ( 𝑅  ~QG  𝐼 ) )  =  ( [ 𝑝 ] ( 𝑂  ~QG  𝐼 ) ( +g ‘ ( 𝑂  /s  ( 𝑂  ~QG  𝐼 ) ) ) [ 𝑞 ] ( 𝑂  ~QG  𝐼 ) ) ) | 
						
							| 30 | 29 | ad4antr | ⊢ ( ( ( ( ( 𝜑  ∧  𝑝  ∈  𝐵 )  ∧  𝑋  =  [ 𝑝 ] ( 𝑅  ~QG  𝐼 ) )  ∧  𝑞  ∈  𝐵 )  ∧  𝑌  =  [ 𝑞 ] ( 𝑅  ~QG  𝐼 ) )  →  ( [ 𝑝 ] ( 𝑅  ~QG  𝐼 ) ( +g ‘ ( 𝑂  /s  ( 𝑂  ~QG  𝐼 ) ) ) [ 𝑞 ] ( 𝑅  ~QG  𝐼 ) )  =  ( [ 𝑝 ] ( 𝑂  ~QG  𝐼 ) ( +g ‘ ( 𝑂  /s  ( 𝑂  ~QG  𝐼 ) ) ) [ 𝑞 ] ( 𝑂  ~QG  𝐼 ) ) ) | 
						
							| 31 | 2 | opprnsg | ⊢ ( NrmSGrp ‘ 𝑅 )  =  ( NrmSGrp ‘ 𝑂 ) | 
						
							| 32 | 4 31 | eleqtrdi | ⊢ ( 𝜑  →  𝐼  ∈  ( NrmSGrp ‘ 𝑂 ) ) | 
						
							| 33 | 32 | ad4antr | ⊢ ( ( ( ( ( 𝜑  ∧  𝑝  ∈  𝐵 )  ∧  𝑋  =  [ 𝑝 ] ( 𝑅  ~QG  𝐼 ) )  ∧  𝑞  ∈  𝐵 )  ∧  𝑌  =  [ 𝑞 ] ( 𝑅  ~QG  𝐼 ) )  →  𝐼  ∈  ( NrmSGrp ‘ 𝑂 ) ) | 
						
							| 34 | 13 1 | eleqtrdi | ⊢ ( ( ( ( ( 𝜑  ∧  𝑝  ∈  𝐵 )  ∧  𝑋  =  [ 𝑝 ] ( 𝑅  ~QG  𝐼 ) )  ∧  𝑞  ∈  𝐵 )  ∧  𝑌  =  [ 𝑞 ] ( 𝑅  ~QG  𝐼 ) )  →  𝑝  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 35 | 14 1 | eleqtrdi | ⊢ ( ( ( ( ( 𝜑  ∧  𝑝  ∈  𝐵 )  ∧  𝑋  =  [ 𝑝 ] ( 𝑅  ~QG  𝐼 ) )  ∧  𝑞  ∈  𝐵 )  ∧  𝑌  =  [ 𝑞 ] ( 𝑅  ~QG  𝐼 ) )  →  𝑞  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 36 |  | eqid | ⊢ ( 𝑂  /s  ( 𝑂  ~QG  𝐼 ) )  =  ( 𝑂  /s  ( 𝑂  ~QG  𝐼 ) ) | 
						
							| 37 | 2 1 | opprbas | ⊢ 𝐵  =  ( Base ‘ 𝑂 ) | 
						
							| 38 | 1 37 | eqtr3i | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑂 ) | 
						
							| 39 | 2 15 | oppradd | ⊢ ( +g ‘ 𝑅 )  =  ( +g ‘ 𝑂 ) | 
						
							| 40 |  | eqid | ⊢ ( +g ‘ ( 𝑂  /s  ( 𝑂  ~QG  𝐼 ) ) )  =  ( +g ‘ ( 𝑂  /s  ( 𝑂  ~QG  𝐼 ) ) ) | 
						
							| 41 | 36 38 39 40 | qusadd | ⊢ ( ( 𝐼  ∈  ( NrmSGrp ‘ 𝑂 )  ∧  𝑝  ∈  ( Base ‘ 𝑅 )  ∧  𝑞  ∈  ( Base ‘ 𝑅 ) )  →  ( [ 𝑝 ] ( 𝑂  ~QG  𝐼 ) ( +g ‘ ( 𝑂  /s  ( 𝑂  ~QG  𝐼 ) ) ) [ 𝑞 ] ( 𝑂  ~QG  𝐼 ) )  =  [ ( 𝑝 ( +g ‘ 𝑅 ) 𝑞 ) ] ( 𝑂  ~QG  𝐼 ) ) | 
						
							| 42 | 33 34 35 41 | syl3anc | ⊢ ( ( ( ( ( 𝜑  ∧  𝑝  ∈  𝐵 )  ∧  𝑋  =  [ 𝑝 ] ( 𝑅  ~QG  𝐼 ) )  ∧  𝑞  ∈  𝐵 )  ∧  𝑌  =  [ 𝑞 ] ( 𝑅  ~QG  𝐼 ) )  →  ( [ 𝑝 ] ( 𝑂  ~QG  𝐼 ) ( +g ‘ ( 𝑂  /s  ( 𝑂  ~QG  𝐼 ) ) ) [ 𝑞 ] ( 𝑂  ~QG  𝐼 ) )  =  [ ( 𝑝 ( +g ‘ 𝑅 ) 𝑞 ) ] ( 𝑂  ~QG  𝐼 ) ) | 
						
							| 43 | 30 42 | eqtrd | ⊢ ( ( ( ( ( 𝜑  ∧  𝑝  ∈  𝐵 )  ∧  𝑋  =  [ 𝑝 ] ( 𝑅  ~QG  𝐼 ) )  ∧  𝑞  ∈  𝐵 )  ∧  𝑌  =  [ 𝑞 ] ( 𝑅  ~QG  𝐼 ) )  →  ( [ 𝑝 ] ( 𝑅  ~QG  𝐼 ) ( +g ‘ ( 𝑂  /s  ( 𝑂  ~QG  𝐼 ) ) ) [ 𝑞 ] ( 𝑅  ~QG  𝐼 ) )  =  [ ( 𝑝 ( +g ‘ 𝑅 ) 𝑞 ) ] ( 𝑂  ~QG  𝐼 ) ) | 
						
							| 44 | 18 19 | oveq12d | ⊢ ( ( ( ( ( 𝜑  ∧  𝑝  ∈  𝐵 )  ∧  𝑋  =  [ 𝑝 ] ( 𝑅  ~QG  𝐼 ) )  ∧  𝑞  ∈  𝐵 )  ∧  𝑌  =  [ 𝑞 ] ( 𝑅  ~QG  𝐼 ) )  →  ( 𝑋 ( +g ‘ ( 𝑂  /s  ( 𝑂  ~QG  𝐼 ) ) ) 𝑌 )  =  ( [ 𝑝 ] ( 𝑅  ~QG  𝐼 ) ( +g ‘ ( 𝑂  /s  ( 𝑂  ~QG  𝐼 ) ) ) [ 𝑞 ] ( 𝑅  ~QG  𝐼 ) ) ) | 
						
							| 45 | 26 | ad4antr | ⊢ ( ( ( ( ( 𝜑  ∧  𝑝  ∈  𝐵 )  ∧  𝑋  =  [ 𝑝 ] ( 𝑅  ~QG  𝐼 ) )  ∧  𝑞  ∈  𝐵 )  ∧  𝑌  =  [ 𝑞 ] ( 𝑅  ~QG  𝐼 ) )  →  ( 𝑅  ~QG  𝐼 )  =  ( 𝑂  ~QG  𝐼 ) ) | 
						
							| 46 | 45 | eceq2d | ⊢ ( ( ( ( ( 𝜑  ∧  𝑝  ∈  𝐵 )  ∧  𝑋  =  [ 𝑝 ] ( 𝑅  ~QG  𝐼 ) )  ∧  𝑞  ∈  𝐵 )  ∧  𝑌  =  [ 𝑞 ] ( 𝑅  ~QG  𝐼 ) )  →  [ ( 𝑝 ( +g ‘ 𝑅 ) 𝑞 ) ] ( 𝑅  ~QG  𝐼 )  =  [ ( 𝑝 ( +g ‘ 𝑅 ) 𝑞 ) ] ( 𝑂  ~QG  𝐼 ) ) | 
						
							| 47 | 43 44 46 | 3eqtr4d | ⊢ ( ( ( ( ( 𝜑  ∧  𝑝  ∈  𝐵 )  ∧  𝑋  =  [ 𝑝 ] ( 𝑅  ~QG  𝐼 ) )  ∧  𝑞  ∈  𝐵 )  ∧  𝑌  =  [ 𝑞 ] ( 𝑅  ~QG  𝐼 ) )  →  ( 𝑋 ( +g ‘ ( 𝑂  /s  ( 𝑂  ~QG  𝐼 ) ) ) 𝑌 )  =  [ ( 𝑝 ( +g ‘ 𝑅 ) 𝑞 ) ] ( 𝑅  ~QG  𝐼 ) ) | 
						
							| 48 | 17 20 47 | 3eqtr4d | ⊢ ( ( ( ( ( 𝜑  ∧  𝑝  ∈  𝐵 )  ∧  𝑋  =  [ 𝑝 ] ( 𝑅  ~QG  𝐼 ) )  ∧  𝑞  ∈  𝐵 )  ∧  𝑌  =  [ 𝑞 ] ( 𝑅  ~QG  𝐼 ) )  →  ( 𝑋 ( +g ‘ 𝑄 ) 𝑌 )  =  ( 𝑋 ( +g ‘ ( 𝑂  /s  ( 𝑂  ~QG  𝐼 ) ) ) 𝑌 ) ) | 
						
							| 49 | 3 | a1i | ⊢ ( 𝜑  →  𝑄  =  ( 𝑅  /s  ( 𝑅  ~QG  𝐼 ) ) ) | 
						
							| 50 | 1 | a1i | ⊢ ( 𝜑  →  𝐵  =  ( Base ‘ 𝑅 ) ) | 
						
							| 51 |  | ovexd | ⊢ ( 𝜑  →  ( 𝑅  ~QG  𝐼 )  ∈  V ) | 
						
							| 52 | 49 50 51 21 | qusbas | ⊢ ( 𝜑  →  ( 𝐵  /  ( 𝑅  ~QG  𝐼 ) )  =  ( Base ‘ 𝑄 ) ) | 
						
							| 53 | 5 52 | eqtr4id | ⊢ ( 𝜑  →  𝐸  =  ( 𝐵  /  ( 𝑅  ~QG  𝐼 ) ) ) | 
						
							| 54 | 7 53 | eleqtrd | ⊢ ( 𝜑  →  𝑌  ∈  ( 𝐵  /  ( 𝑅  ~QG  𝐼 ) ) ) | 
						
							| 55 | 54 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑝  ∈  𝐵 )  ∧  𝑋  =  [ 𝑝 ] ( 𝑅  ~QG  𝐼 ) )  →  𝑌  ∈  ( 𝐵  /  ( 𝑅  ~QG  𝐼 ) ) ) | 
						
							| 56 |  | elqsi | ⊢ ( 𝑌  ∈  ( 𝐵  /  ( 𝑅  ~QG  𝐼 ) )  →  ∃ 𝑞  ∈  𝐵 𝑌  =  [ 𝑞 ] ( 𝑅  ~QG  𝐼 ) ) | 
						
							| 57 | 55 56 | syl | ⊢ ( ( ( 𝜑  ∧  𝑝  ∈  𝐵 )  ∧  𝑋  =  [ 𝑝 ] ( 𝑅  ~QG  𝐼 ) )  →  ∃ 𝑞  ∈  𝐵 𝑌  =  [ 𝑞 ] ( 𝑅  ~QG  𝐼 ) ) | 
						
							| 58 | 48 57 | r19.29a | ⊢ ( ( ( 𝜑  ∧  𝑝  ∈  𝐵 )  ∧  𝑋  =  [ 𝑝 ] ( 𝑅  ~QG  𝐼 ) )  →  ( 𝑋 ( +g ‘ 𝑄 ) 𝑌 )  =  ( 𝑋 ( +g ‘ ( 𝑂  /s  ( 𝑂  ~QG  𝐼 ) ) ) 𝑌 ) ) | 
						
							| 59 | 6 53 | eleqtrd | ⊢ ( 𝜑  →  𝑋  ∈  ( 𝐵  /  ( 𝑅  ~QG  𝐼 ) ) ) | 
						
							| 60 |  | elqsi | ⊢ ( 𝑋  ∈  ( 𝐵  /  ( 𝑅  ~QG  𝐼 ) )  →  ∃ 𝑝  ∈  𝐵 𝑋  =  [ 𝑝 ] ( 𝑅  ~QG  𝐼 ) ) | 
						
							| 61 | 59 60 | syl | ⊢ ( 𝜑  →  ∃ 𝑝  ∈  𝐵 𝑋  =  [ 𝑝 ] ( 𝑅  ~QG  𝐼 ) ) | 
						
							| 62 | 58 61 | r19.29a | ⊢ ( 𝜑  →  ( 𝑋 ( +g ‘ 𝑄 ) 𝑌 )  =  ( 𝑋 ( +g ‘ ( 𝑂  /s  ( 𝑂  ~QG  𝐼 ) ) ) 𝑌 ) ) | 
						
							| 63 | 11 62 | eqtr3id | ⊢ ( 𝜑  →  ( 𝑋 ( +g ‘ ( oppr ‘ 𝑄 ) ) 𝑌 )  =  ( 𝑋 ( +g ‘ ( 𝑂  /s  ( 𝑂  ~QG  𝐼 ) ) ) 𝑌 ) ) |