| Step |
Hyp |
Ref |
Expression |
| 1 |
|
opprqus.b |
|
| 2 |
|
opprqus.o |
|
| 3 |
|
opprqus.q |
|
| 4 |
|
opprqus.i |
|
| 5 |
|
opprqusplusg.e |
|
| 6 |
|
opprqusplusg.x |
|
| 7 |
|
opprqusplusg.y |
|
| 8 |
|
eqid |
|
| 9 |
|
eqid |
|
| 10 |
8 9
|
oppradd |
|
| 11 |
10
|
oveqi |
|
| 12 |
4
|
ad4antr |
|
| 13 |
|
simp-4r |
|
| 14 |
|
simplr |
|
| 15 |
|
eqid |
|
| 16 |
3 1 15 9
|
qusadd |
|
| 17 |
12 13 14 16
|
syl3anc |
|
| 18 |
|
simpllr |
|
| 19 |
|
simpr |
|
| 20 |
18 19
|
oveq12d |
|
| 21 |
4
|
elfvexd |
|
| 22 |
|
nsgsubg |
|
| 23 |
1
|
subgss |
|
| 24 |
4 22 23
|
3syl |
|
| 25 |
2 1
|
oppreqg |
|
| 26 |
21 24 25
|
syl2anc |
|
| 27 |
26
|
eceq2d |
|
| 28 |
26
|
eceq2d |
|
| 29 |
27 28
|
oveq12d |
|
| 30 |
29
|
ad4antr |
|
| 31 |
2
|
opprnsg |
|
| 32 |
4 31
|
eleqtrdi |
|
| 33 |
32
|
ad4antr |
|
| 34 |
13 1
|
eleqtrdi |
|
| 35 |
14 1
|
eleqtrdi |
|
| 36 |
|
eqid |
|
| 37 |
2 1
|
opprbas |
|
| 38 |
1 37
|
eqtr3i |
|
| 39 |
2 15
|
oppradd |
|
| 40 |
|
eqid |
|
| 41 |
36 38 39 40
|
qusadd |
|
| 42 |
33 34 35 41
|
syl3anc |
|
| 43 |
30 42
|
eqtrd |
|
| 44 |
18 19
|
oveq12d |
|
| 45 |
26
|
ad4antr |
|
| 46 |
45
|
eceq2d |
|
| 47 |
43 44 46
|
3eqtr4d |
|
| 48 |
17 20 47
|
3eqtr4d |
|
| 49 |
3
|
a1i |
|
| 50 |
1
|
a1i |
|
| 51 |
|
ovexd |
|
| 52 |
49 50 51 21
|
qusbas |
|
| 53 |
5 52
|
eqtr4id |
|
| 54 |
7 53
|
eleqtrd |
|
| 55 |
54
|
ad2antrr |
|
| 56 |
|
elqsi |
|
| 57 |
55 56
|
syl |
|
| 58 |
48 57
|
r19.29a |
|
| 59 |
6 53
|
eleqtrd |
|
| 60 |
|
elqsi |
|
| 61 |
59 60
|
syl |
|
| 62 |
58 61
|
r19.29a |
|
| 63 |
11 62
|
eqtr3id |
|