| Step |
Hyp |
Ref |
Expression |
| 1 |
|
opprqus.b |
|
| 2 |
|
opprqus.o |
|
| 3 |
|
opprqus.q |
|
| 4 |
|
opprqus1r.r |
|
| 5 |
|
opprqus1r.i |
|
| 6 |
|
eqid |
|
| 7 |
|
fvexd |
|
| 8 |
|
ovexd |
|
| 9 |
5
|
2idllidld |
|
| 10 |
|
eqid |
|
| 11 |
1 10
|
lidlss |
|
| 12 |
9 11
|
syl |
|
| 13 |
1 2 3 4 12
|
opprqusbas |
|
| 14 |
4
|
ad2antrr |
|
| 15 |
5
|
ad2antrr |
|
| 16 |
|
eqid |
|
| 17 |
|
simpr |
|
| 18 |
|
eqid |
|
| 19 |
18 16
|
opprbas |
|
| 20 |
17 19
|
eleqtrrdi |
|
| 21 |
20
|
adantr |
|
| 22 |
|
simpr |
|
| 23 |
22 19
|
eleqtrrdi |
|
| 24 |
23
|
adantlr |
|
| 25 |
1 2 3 14 15 16 21 24
|
opprqusmulr |
|
| 26 |
6 7 8 13 25
|
urpropd |
|