| Step | Hyp | Ref | Expression | 
						
							| 1 |  | opprqus.b | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 2 |  | opprqus.o | ⊢ 𝑂  =  ( oppr ‘ 𝑅 ) | 
						
							| 3 |  | opprqus.q | ⊢ 𝑄  =  ( 𝑅  /s  ( 𝑅  ~QG  𝐼 ) ) | 
						
							| 4 |  | opprqus1r.r | ⊢ ( 𝜑  →  𝑅  ∈  Ring ) | 
						
							| 5 |  | opprqus1r.i | ⊢ ( 𝜑  →  𝐼  ∈  ( 2Ideal ‘ 𝑅 ) ) | 
						
							| 6 |  | eqid | ⊢ ( oppr ‘ 𝑄 )  =  ( oppr ‘ 𝑄 ) | 
						
							| 7 |  | eqid | ⊢ ( 1r ‘ 𝑄 )  =  ( 1r ‘ 𝑄 ) | 
						
							| 8 | 6 7 | oppr1 | ⊢ ( 1r ‘ 𝑄 )  =  ( 1r ‘ ( oppr ‘ 𝑄 ) ) | 
						
							| 9 | 1 2 3 4 5 | opprqus1r | ⊢ ( 𝜑  →  ( 1r ‘ ( oppr ‘ 𝑄 ) )  =  ( 1r ‘ ( 𝑂  /s  ( 𝑂  ~QG  𝐼 ) ) ) ) | 
						
							| 10 | 8 9 | eqtrid | ⊢ ( 𝜑  →  ( 1r ‘ 𝑄 )  =  ( 1r ‘ ( 𝑂  /s  ( 𝑂  ~QG  𝐼 ) ) ) ) | 
						
							| 11 |  | eqid | ⊢ ( 0g ‘ 𝑄 )  =  ( 0g ‘ 𝑄 ) | 
						
							| 12 | 6 11 | oppr0 | ⊢ ( 0g ‘ 𝑄 )  =  ( 0g ‘ ( oppr ‘ 𝑄 ) ) | 
						
							| 13 | 5 | 2idllidld | ⊢ ( 𝜑  →  𝐼  ∈  ( LIdeal ‘ 𝑅 ) ) | 
						
							| 14 |  | lidlnsg | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐼  ∈  ( LIdeal ‘ 𝑅 ) )  →  𝐼  ∈  ( NrmSGrp ‘ 𝑅 ) ) | 
						
							| 15 | 4 13 14 | syl2anc | ⊢ ( 𝜑  →  𝐼  ∈  ( NrmSGrp ‘ 𝑅 ) ) | 
						
							| 16 | 1 2 3 15 | opprqus0g | ⊢ ( 𝜑  →  ( 0g ‘ ( oppr ‘ 𝑄 ) )  =  ( 0g ‘ ( 𝑂  /s  ( 𝑂  ~QG  𝐼 ) ) ) ) | 
						
							| 17 | 12 16 | eqtrid | ⊢ ( 𝜑  →  ( 0g ‘ 𝑄 )  =  ( 0g ‘ ( 𝑂  /s  ( 𝑂  ~QG  𝐼 ) ) ) ) | 
						
							| 18 | 10 17 | neeq12d | ⊢ ( 𝜑  →  ( ( 1r ‘ 𝑄 )  ≠  ( 0g ‘ 𝑄 )  ↔  ( 1r ‘ ( 𝑂  /s  ( 𝑂  ~QG  𝐼 ) ) )  ≠  ( 0g ‘ ( 𝑂  /s  ( 𝑂  ~QG  𝐼 ) ) ) ) ) | 
						
							| 19 |  | eqid | ⊢ ( Base ‘ 𝑄 )  =  ( Base ‘ 𝑄 ) | 
						
							| 20 | 6 19 | opprbas | ⊢ ( Base ‘ 𝑄 )  =  ( Base ‘ ( oppr ‘ 𝑄 ) ) | 
						
							| 21 |  | eqid | ⊢ ( LIdeal ‘ 𝑅 )  =  ( LIdeal ‘ 𝑅 ) | 
						
							| 22 | 1 21 | lidlss | ⊢ ( 𝐼  ∈  ( LIdeal ‘ 𝑅 )  →  𝐼  ⊆  𝐵 ) | 
						
							| 23 | 13 22 | syl | ⊢ ( 𝜑  →  𝐼  ⊆  𝐵 ) | 
						
							| 24 | 1 2 3 4 23 | opprqusbas | ⊢ ( 𝜑  →  ( Base ‘ ( oppr ‘ 𝑄 ) )  =  ( Base ‘ ( 𝑂  /s  ( 𝑂  ~QG  𝐼 ) ) ) ) | 
						
							| 25 | 20 24 | eqtrid | ⊢ ( 𝜑  →  ( Base ‘ 𝑄 )  =  ( Base ‘ ( 𝑂  /s  ( 𝑂  ~QG  𝐼 ) ) ) ) | 
						
							| 26 | 17 | sneqd | ⊢ ( 𝜑  →  { ( 0g ‘ 𝑄 ) }  =  { ( 0g ‘ ( 𝑂  /s  ( 𝑂  ~QG  𝐼 ) ) ) } ) | 
						
							| 27 | 25 26 | difeq12d | ⊢ ( 𝜑  →  ( ( Base ‘ 𝑄 )  ∖  { ( 0g ‘ 𝑄 ) } )  =  ( ( Base ‘ ( 𝑂  /s  ( 𝑂  ~QG  𝐼 ) ) )  ∖  { ( 0g ‘ ( 𝑂  /s  ( 𝑂  ~QG  𝐼 ) ) ) } ) ) | 
						
							| 28 | 25 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( Base ‘ 𝑄 )  ∖  { ( 0g ‘ 𝑄 ) } ) )  →  ( Base ‘ 𝑄 )  =  ( Base ‘ ( 𝑂  /s  ( 𝑂  ~QG  𝐼 ) ) ) ) | 
						
							| 29 | 4 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( ( Base ‘ 𝑄 )  ∖  { ( 0g ‘ 𝑄 ) } ) )  ∧  𝑦  ∈  ( Base ‘ 𝑄 ) )  →  𝑅  ∈  Ring ) | 
						
							| 30 | 5 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( ( Base ‘ 𝑄 )  ∖  { ( 0g ‘ 𝑄 ) } ) )  ∧  𝑦  ∈  ( Base ‘ 𝑄 ) )  →  𝐼  ∈  ( 2Ideal ‘ 𝑅 ) ) | 
						
							| 31 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( ( Base ‘ 𝑄 )  ∖  { ( 0g ‘ 𝑄 ) } ) )  ∧  𝑦  ∈  ( Base ‘ 𝑄 ) )  →  𝑥  ∈  ( ( Base ‘ 𝑄 )  ∖  { ( 0g ‘ 𝑄 ) } ) ) | 
						
							| 32 | 31 | eldifad | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( ( Base ‘ 𝑄 )  ∖  { ( 0g ‘ 𝑄 ) } ) )  ∧  𝑦  ∈  ( Base ‘ 𝑄 ) )  →  𝑥  ∈  ( Base ‘ 𝑄 ) ) | 
						
							| 33 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( ( Base ‘ 𝑄 )  ∖  { ( 0g ‘ 𝑄 ) } ) )  ∧  𝑦  ∈  ( Base ‘ 𝑄 ) )  →  𝑦  ∈  ( Base ‘ 𝑄 ) ) | 
						
							| 34 | 1 2 3 29 30 19 32 33 | opprqusmulr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( ( Base ‘ 𝑄 )  ∖  { ( 0g ‘ 𝑄 ) } ) )  ∧  𝑦  ∈  ( Base ‘ 𝑄 ) )  →  ( 𝑥 ( .r ‘ ( oppr ‘ 𝑄 ) ) 𝑦 )  =  ( 𝑥 ( .r ‘ ( 𝑂  /s  ( 𝑂  ~QG  𝐼 ) ) ) 𝑦 ) ) | 
						
							| 35 | 10 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( ( Base ‘ 𝑄 )  ∖  { ( 0g ‘ 𝑄 ) } ) )  ∧  𝑦  ∈  ( Base ‘ 𝑄 ) )  →  ( 1r ‘ 𝑄 )  =  ( 1r ‘ ( 𝑂  /s  ( 𝑂  ~QG  𝐼 ) ) ) ) | 
						
							| 36 | 34 35 | eqeq12d | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( ( Base ‘ 𝑄 )  ∖  { ( 0g ‘ 𝑄 ) } ) )  ∧  𝑦  ∈  ( Base ‘ 𝑄 ) )  →  ( ( 𝑥 ( .r ‘ ( oppr ‘ 𝑄 ) ) 𝑦 )  =  ( 1r ‘ 𝑄 )  ↔  ( 𝑥 ( .r ‘ ( 𝑂  /s  ( 𝑂  ~QG  𝐼 ) ) ) 𝑦 )  =  ( 1r ‘ ( 𝑂  /s  ( 𝑂  ~QG  𝐼 ) ) ) ) ) | 
						
							| 37 | 1 2 3 29 30 19 33 32 | opprqusmulr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( ( Base ‘ 𝑄 )  ∖  { ( 0g ‘ 𝑄 ) } ) )  ∧  𝑦  ∈  ( Base ‘ 𝑄 ) )  →  ( 𝑦 ( .r ‘ ( oppr ‘ 𝑄 ) ) 𝑥 )  =  ( 𝑦 ( .r ‘ ( 𝑂  /s  ( 𝑂  ~QG  𝐼 ) ) ) 𝑥 ) ) | 
						
							| 38 | 37 35 | eqeq12d | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( ( Base ‘ 𝑄 )  ∖  { ( 0g ‘ 𝑄 ) } ) )  ∧  𝑦  ∈  ( Base ‘ 𝑄 ) )  →  ( ( 𝑦 ( .r ‘ ( oppr ‘ 𝑄 ) ) 𝑥 )  =  ( 1r ‘ 𝑄 )  ↔  ( 𝑦 ( .r ‘ ( 𝑂  /s  ( 𝑂  ~QG  𝐼 ) ) ) 𝑥 )  =  ( 1r ‘ ( 𝑂  /s  ( 𝑂  ~QG  𝐼 ) ) ) ) ) | 
						
							| 39 | 36 38 | anbi12d | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( ( Base ‘ 𝑄 )  ∖  { ( 0g ‘ 𝑄 ) } ) )  ∧  𝑦  ∈  ( Base ‘ 𝑄 ) )  →  ( ( ( 𝑥 ( .r ‘ ( oppr ‘ 𝑄 ) ) 𝑦 )  =  ( 1r ‘ 𝑄 )  ∧  ( 𝑦 ( .r ‘ ( oppr ‘ 𝑄 ) ) 𝑥 )  =  ( 1r ‘ 𝑄 ) )  ↔  ( ( 𝑥 ( .r ‘ ( 𝑂  /s  ( 𝑂  ~QG  𝐼 ) ) ) 𝑦 )  =  ( 1r ‘ ( 𝑂  /s  ( 𝑂  ~QG  𝐼 ) ) )  ∧  ( 𝑦 ( .r ‘ ( 𝑂  /s  ( 𝑂  ~QG  𝐼 ) ) ) 𝑥 )  =  ( 1r ‘ ( 𝑂  /s  ( 𝑂  ~QG  𝐼 ) ) ) ) ) ) | 
						
							| 40 | 28 39 | rexeqbidva | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( Base ‘ 𝑄 )  ∖  { ( 0g ‘ 𝑄 ) } ) )  →  ( ∃ 𝑦  ∈  ( Base ‘ 𝑄 ) ( ( 𝑥 ( .r ‘ ( oppr ‘ 𝑄 ) ) 𝑦 )  =  ( 1r ‘ 𝑄 )  ∧  ( 𝑦 ( .r ‘ ( oppr ‘ 𝑄 ) ) 𝑥 )  =  ( 1r ‘ 𝑄 ) )  ↔  ∃ 𝑦  ∈  ( Base ‘ ( 𝑂  /s  ( 𝑂  ~QG  𝐼 ) ) ) ( ( 𝑥 ( .r ‘ ( 𝑂  /s  ( 𝑂  ~QG  𝐼 ) ) ) 𝑦 )  =  ( 1r ‘ ( 𝑂  /s  ( 𝑂  ~QG  𝐼 ) ) )  ∧  ( 𝑦 ( .r ‘ ( 𝑂  /s  ( 𝑂  ~QG  𝐼 ) ) ) 𝑥 )  =  ( 1r ‘ ( 𝑂  /s  ( 𝑂  ~QG  𝐼 ) ) ) ) ) ) | 
						
							| 41 | 27 40 | raleqbidva | ⊢ ( 𝜑  →  ( ∀ 𝑥  ∈  ( ( Base ‘ 𝑄 )  ∖  { ( 0g ‘ 𝑄 ) } ) ∃ 𝑦  ∈  ( Base ‘ 𝑄 ) ( ( 𝑥 ( .r ‘ ( oppr ‘ 𝑄 ) ) 𝑦 )  =  ( 1r ‘ 𝑄 )  ∧  ( 𝑦 ( .r ‘ ( oppr ‘ 𝑄 ) ) 𝑥 )  =  ( 1r ‘ 𝑄 ) )  ↔  ∀ 𝑥  ∈  ( ( Base ‘ ( 𝑂  /s  ( 𝑂  ~QG  𝐼 ) ) )  ∖  { ( 0g ‘ ( 𝑂  /s  ( 𝑂  ~QG  𝐼 ) ) ) } ) ∃ 𝑦  ∈  ( Base ‘ ( 𝑂  /s  ( 𝑂  ~QG  𝐼 ) ) ) ( ( 𝑥 ( .r ‘ ( 𝑂  /s  ( 𝑂  ~QG  𝐼 ) ) ) 𝑦 )  =  ( 1r ‘ ( 𝑂  /s  ( 𝑂  ~QG  𝐼 ) ) )  ∧  ( 𝑦 ( .r ‘ ( 𝑂  /s  ( 𝑂  ~QG  𝐼 ) ) ) 𝑥 )  =  ( 1r ‘ ( 𝑂  /s  ( 𝑂  ~QG  𝐼 ) ) ) ) ) ) | 
						
							| 42 | 18 41 | anbi12d | ⊢ ( 𝜑  →  ( ( ( 1r ‘ 𝑄 )  ≠  ( 0g ‘ 𝑄 )  ∧  ∀ 𝑥  ∈  ( ( Base ‘ 𝑄 )  ∖  { ( 0g ‘ 𝑄 ) } ) ∃ 𝑦  ∈  ( Base ‘ 𝑄 ) ( ( 𝑥 ( .r ‘ ( oppr ‘ 𝑄 ) ) 𝑦 )  =  ( 1r ‘ 𝑄 )  ∧  ( 𝑦 ( .r ‘ ( oppr ‘ 𝑄 ) ) 𝑥 )  =  ( 1r ‘ 𝑄 ) ) )  ↔  ( ( 1r ‘ ( 𝑂  /s  ( 𝑂  ~QG  𝐼 ) ) )  ≠  ( 0g ‘ ( 𝑂  /s  ( 𝑂  ~QG  𝐼 ) ) )  ∧  ∀ 𝑥  ∈  ( ( Base ‘ ( 𝑂  /s  ( 𝑂  ~QG  𝐼 ) ) )  ∖  { ( 0g ‘ ( 𝑂  /s  ( 𝑂  ~QG  𝐼 ) ) ) } ) ∃ 𝑦  ∈  ( Base ‘ ( 𝑂  /s  ( 𝑂  ~QG  𝐼 ) ) ) ( ( 𝑥 ( .r ‘ ( 𝑂  /s  ( 𝑂  ~QG  𝐼 ) ) ) 𝑦 )  =  ( 1r ‘ ( 𝑂  /s  ( 𝑂  ~QG  𝐼 ) ) )  ∧  ( 𝑦 ( .r ‘ ( 𝑂  /s  ( 𝑂  ~QG  𝐼 ) ) ) 𝑥 )  =  ( 1r ‘ ( 𝑂  /s  ( 𝑂  ~QG  𝐼 ) ) ) ) ) ) ) | 
						
							| 43 |  | eqid | ⊢ ( .r ‘ ( oppr ‘ 𝑄 ) )  =  ( .r ‘ ( oppr ‘ 𝑄 ) ) | 
						
							| 44 |  | eqid | ⊢ ( Unit ‘ 𝑄 )  =  ( Unit ‘ 𝑄 ) | 
						
							| 45 | 44 6 | opprunit | ⊢ ( Unit ‘ 𝑄 )  =  ( Unit ‘ ( oppr ‘ 𝑄 ) ) | 
						
							| 46 |  | eqid | ⊢ ( 2Ideal ‘ 𝑅 )  =  ( 2Ideal ‘ 𝑅 ) | 
						
							| 47 | 3 46 | qusring | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐼  ∈  ( 2Ideal ‘ 𝑅 ) )  →  𝑄  ∈  Ring ) | 
						
							| 48 | 4 5 47 | syl2anc | ⊢ ( 𝜑  →  𝑄  ∈  Ring ) | 
						
							| 49 | 6 | opprring | ⊢ ( 𝑄  ∈  Ring  →  ( oppr ‘ 𝑄 )  ∈  Ring ) | 
						
							| 50 | 48 49 | syl | ⊢ ( 𝜑  →  ( oppr ‘ 𝑄 )  ∈  Ring ) | 
						
							| 51 | 20 12 8 43 45 50 | isdrng4 | ⊢ ( 𝜑  →  ( ( oppr ‘ 𝑄 )  ∈  DivRing  ↔  ( ( 1r ‘ 𝑄 )  ≠  ( 0g ‘ 𝑄 )  ∧  ∀ 𝑥  ∈  ( ( Base ‘ 𝑄 )  ∖  { ( 0g ‘ 𝑄 ) } ) ∃ 𝑦  ∈  ( Base ‘ 𝑄 ) ( ( 𝑥 ( .r ‘ ( oppr ‘ 𝑄 ) ) 𝑦 )  =  ( 1r ‘ 𝑄 )  ∧  ( 𝑦 ( .r ‘ ( oppr ‘ 𝑄 ) ) 𝑥 )  =  ( 1r ‘ 𝑄 ) ) ) ) ) | 
						
							| 52 |  | eqid | ⊢ ( Base ‘ ( 𝑂  /s  ( 𝑂  ~QG  𝐼 ) ) )  =  ( Base ‘ ( 𝑂  /s  ( 𝑂  ~QG  𝐼 ) ) ) | 
						
							| 53 |  | eqid | ⊢ ( 0g ‘ ( 𝑂  /s  ( 𝑂  ~QG  𝐼 ) ) )  =  ( 0g ‘ ( 𝑂  /s  ( 𝑂  ~QG  𝐼 ) ) ) | 
						
							| 54 |  | eqid | ⊢ ( 1r ‘ ( 𝑂  /s  ( 𝑂  ~QG  𝐼 ) ) )  =  ( 1r ‘ ( 𝑂  /s  ( 𝑂  ~QG  𝐼 ) ) ) | 
						
							| 55 |  | eqid | ⊢ ( .r ‘ ( 𝑂  /s  ( 𝑂  ~QG  𝐼 ) ) )  =  ( .r ‘ ( 𝑂  /s  ( 𝑂  ~QG  𝐼 ) ) ) | 
						
							| 56 |  | eqid | ⊢ ( Unit ‘ ( 𝑂  /s  ( 𝑂  ~QG  𝐼 ) ) )  =  ( Unit ‘ ( 𝑂  /s  ( 𝑂  ~QG  𝐼 ) ) ) | 
						
							| 57 | 2 | opprring | ⊢ ( 𝑅  ∈  Ring  →  𝑂  ∈  Ring ) | 
						
							| 58 | 4 57 | syl | ⊢ ( 𝜑  →  𝑂  ∈  Ring ) | 
						
							| 59 | 2 4 | oppr2idl | ⊢ ( 𝜑  →  ( 2Ideal ‘ 𝑅 )  =  ( 2Ideal ‘ 𝑂 ) ) | 
						
							| 60 | 5 59 | eleqtrd | ⊢ ( 𝜑  →  𝐼  ∈  ( 2Ideal ‘ 𝑂 ) ) | 
						
							| 61 |  | eqid | ⊢ ( 𝑂  /s  ( 𝑂  ~QG  𝐼 ) )  =  ( 𝑂  /s  ( 𝑂  ~QG  𝐼 ) ) | 
						
							| 62 |  | eqid | ⊢ ( 2Ideal ‘ 𝑂 )  =  ( 2Ideal ‘ 𝑂 ) | 
						
							| 63 | 61 62 | qusring | ⊢ ( ( 𝑂  ∈  Ring  ∧  𝐼  ∈  ( 2Ideal ‘ 𝑂 ) )  →  ( 𝑂  /s  ( 𝑂  ~QG  𝐼 ) )  ∈  Ring ) | 
						
							| 64 | 58 60 63 | syl2anc | ⊢ ( 𝜑  →  ( 𝑂  /s  ( 𝑂  ~QG  𝐼 ) )  ∈  Ring ) | 
						
							| 65 | 52 53 54 55 56 64 | isdrng4 | ⊢ ( 𝜑  →  ( ( 𝑂  /s  ( 𝑂  ~QG  𝐼 ) )  ∈  DivRing  ↔  ( ( 1r ‘ ( 𝑂  /s  ( 𝑂  ~QG  𝐼 ) ) )  ≠  ( 0g ‘ ( 𝑂  /s  ( 𝑂  ~QG  𝐼 ) ) )  ∧  ∀ 𝑥  ∈  ( ( Base ‘ ( 𝑂  /s  ( 𝑂  ~QG  𝐼 ) ) )  ∖  { ( 0g ‘ ( 𝑂  /s  ( 𝑂  ~QG  𝐼 ) ) ) } ) ∃ 𝑦  ∈  ( Base ‘ ( 𝑂  /s  ( 𝑂  ~QG  𝐼 ) ) ) ( ( 𝑥 ( .r ‘ ( 𝑂  /s  ( 𝑂  ~QG  𝐼 ) ) ) 𝑦 )  =  ( 1r ‘ ( 𝑂  /s  ( 𝑂  ~QG  𝐼 ) ) )  ∧  ( 𝑦 ( .r ‘ ( 𝑂  /s  ( 𝑂  ~QG  𝐼 ) ) ) 𝑥 )  =  ( 1r ‘ ( 𝑂  /s  ( 𝑂  ~QG  𝐼 ) ) ) ) ) ) ) | 
						
							| 66 | 42 51 65 | 3bitr4d | ⊢ ( 𝜑  →  ( ( oppr ‘ 𝑄 )  ∈  DivRing  ↔  ( 𝑂  /s  ( 𝑂  ~QG  𝐼 ) )  ∈  DivRing ) ) |