| Step |
Hyp |
Ref |
Expression |
| 1 |
|
opprqus.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 2 |
|
opprqus.o |
⊢ 𝑂 = ( oppr ‘ 𝑅 ) |
| 3 |
|
opprqus.q |
⊢ 𝑄 = ( 𝑅 /s ( 𝑅 ~QG 𝐼 ) ) |
| 4 |
|
opprqus1r.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 5 |
|
opprqus1r.i |
⊢ ( 𝜑 → 𝐼 ∈ ( 2Ideal ‘ 𝑅 ) ) |
| 6 |
|
eqid |
⊢ ( oppr ‘ 𝑄 ) = ( oppr ‘ 𝑄 ) |
| 7 |
|
eqid |
⊢ ( 1r ‘ 𝑄 ) = ( 1r ‘ 𝑄 ) |
| 8 |
6 7
|
oppr1 |
⊢ ( 1r ‘ 𝑄 ) = ( 1r ‘ ( oppr ‘ 𝑄 ) ) |
| 9 |
1 2 3 4 5
|
opprqus1r |
⊢ ( 𝜑 → ( 1r ‘ ( oppr ‘ 𝑄 ) ) = ( 1r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝐼 ) ) ) ) |
| 10 |
8 9
|
eqtrid |
⊢ ( 𝜑 → ( 1r ‘ 𝑄 ) = ( 1r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝐼 ) ) ) ) |
| 11 |
|
eqid |
⊢ ( 0g ‘ 𝑄 ) = ( 0g ‘ 𝑄 ) |
| 12 |
6 11
|
oppr0 |
⊢ ( 0g ‘ 𝑄 ) = ( 0g ‘ ( oppr ‘ 𝑄 ) ) |
| 13 |
5
|
2idllidld |
⊢ ( 𝜑 → 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) |
| 14 |
|
lidlnsg |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) → 𝐼 ∈ ( NrmSGrp ‘ 𝑅 ) ) |
| 15 |
4 13 14
|
syl2anc |
⊢ ( 𝜑 → 𝐼 ∈ ( NrmSGrp ‘ 𝑅 ) ) |
| 16 |
1 2 3 15
|
opprqus0g |
⊢ ( 𝜑 → ( 0g ‘ ( oppr ‘ 𝑄 ) ) = ( 0g ‘ ( 𝑂 /s ( 𝑂 ~QG 𝐼 ) ) ) ) |
| 17 |
12 16
|
eqtrid |
⊢ ( 𝜑 → ( 0g ‘ 𝑄 ) = ( 0g ‘ ( 𝑂 /s ( 𝑂 ~QG 𝐼 ) ) ) ) |
| 18 |
10 17
|
neeq12d |
⊢ ( 𝜑 → ( ( 1r ‘ 𝑄 ) ≠ ( 0g ‘ 𝑄 ) ↔ ( 1r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝐼 ) ) ) ≠ ( 0g ‘ ( 𝑂 /s ( 𝑂 ~QG 𝐼 ) ) ) ) ) |
| 19 |
|
eqid |
⊢ ( Base ‘ 𝑄 ) = ( Base ‘ 𝑄 ) |
| 20 |
6 19
|
opprbas |
⊢ ( Base ‘ 𝑄 ) = ( Base ‘ ( oppr ‘ 𝑄 ) ) |
| 21 |
|
eqid |
⊢ ( LIdeal ‘ 𝑅 ) = ( LIdeal ‘ 𝑅 ) |
| 22 |
1 21
|
lidlss |
⊢ ( 𝐼 ∈ ( LIdeal ‘ 𝑅 ) → 𝐼 ⊆ 𝐵 ) |
| 23 |
13 22
|
syl |
⊢ ( 𝜑 → 𝐼 ⊆ 𝐵 ) |
| 24 |
1 2 3 4 23
|
opprqusbas |
⊢ ( 𝜑 → ( Base ‘ ( oppr ‘ 𝑄 ) ) = ( Base ‘ ( 𝑂 /s ( 𝑂 ~QG 𝐼 ) ) ) ) |
| 25 |
20 24
|
eqtrid |
⊢ ( 𝜑 → ( Base ‘ 𝑄 ) = ( Base ‘ ( 𝑂 /s ( 𝑂 ~QG 𝐼 ) ) ) ) |
| 26 |
17
|
sneqd |
⊢ ( 𝜑 → { ( 0g ‘ 𝑄 ) } = { ( 0g ‘ ( 𝑂 /s ( 𝑂 ~QG 𝐼 ) ) ) } ) |
| 27 |
25 26
|
difeq12d |
⊢ ( 𝜑 → ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) = ( ( Base ‘ ( 𝑂 /s ( 𝑂 ~QG 𝐼 ) ) ) ∖ { ( 0g ‘ ( 𝑂 /s ( 𝑂 ~QG 𝐼 ) ) ) } ) ) |
| 28 |
25
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) → ( Base ‘ 𝑄 ) = ( Base ‘ ( 𝑂 /s ( 𝑂 ~QG 𝐼 ) ) ) ) |
| 29 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑄 ) ) → 𝑅 ∈ Ring ) |
| 30 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑄 ) ) → 𝐼 ∈ ( 2Ideal ‘ 𝑅 ) ) |
| 31 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑄 ) ) → 𝑥 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) |
| 32 |
31
|
eldifad |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑄 ) ) → 𝑥 ∈ ( Base ‘ 𝑄 ) ) |
| 33 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑄 ) ) → 𝑦 ∈ ( Base ‘ 𝑄 ) ) |
| 34 |
1 2 3 29 30 19 32 33
|
opprqusmulr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑄 ) ) → ( 𝑥 ( .r ‘ ( oppr ‘ 𝑄 ) ) 𝑦 ) = ( 𝑥 ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝐼 ) ) ) 𝑦 ) ) |
| 35 |
10
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑄 ) ) → ( 1r ‘ 𝑄 ) = ( 1r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝐼 ) ) ) ) |
| 36 |
34 35
|
eqeq12d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑄 ) ) → ( ( 𝑥 ( .r ‘ ( oppr ‘ 𝑄 ) ) 𝑦 ) = ( 1r ‘ 𝑄 ) ↔ ( 𝑥 ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝐼 ) ) ) 𝑦 ) = ( 1r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝐼 ) ) ) ) ) |
| 37 |
1 2 3 29 30 19 33 32
|
opprqusmulr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑄 ) ) → ( 𝑦 ( .r ‘ ( oppr ‘ 𝑄 ) ) 𝑥 ) = ( 𝑦 ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝐼 ) ) ) 𝑥 ) ) |
| 38 |
37 35
|
eqeq12d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑄 ) ) → ( ( 𝑦 ( .r ‘ ( oppr ‘ 𝑄 ) ) 𝑥 ) = ( 1r ‘ 𝑄 ) ↔ ( 𝑦 ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝐼 ) ) ) 𝑥 ) = ( 1r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝐼 ) ) ) ) ) |
| 39 |
36 38
|
anbi12d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑄 ) ) → ( ( ( 𝑥 ( .r ‘ ( oppr ‘ 𝑄 ) ) 𝑦 ) = ( 1r ‘ 𝑄 ) ∧ ( 𝑦 ( .r ‘ ( oppr ‘ 𝑄 ) ) 𝑥 ) = ( 1r ‘ 𝑄 ) ) ↔ ( ( 𝑥 ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝐼 ) ) ) 𝑦 ) = ( 1r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝐼 ) ) ) ∧ ( 𝑦 ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝐼 ) ) ) 𝑥 ) = ( 1r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝐼 ) ) ) ) ) ) |
| 40 |
28 39
|
rexeqbidva |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) → ( ∃ 𝑦 ∈ ( Base ‘ 𝑄 ) ( ( 𝑥 ( .r ‘ ( oppr ‘ 𝑄 ) ) 𝑦 ) = ( 1r ‘ 𝑄 ) ∧ ( 𝑦 ( .r ‘ ( oppr ‘ 𝑄 ) ) 𝑥 ) = ( 1r ‘ 𝑄 ) ) ↔ ∃ 𝑦 ∈ ( Base ‘ ( 𝑂 /s ( 𝑂 ~QG 𝐼 ) ) ) ( ( 𝑥 ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝐼 ) ) ) 𝑦 ) = ( 1r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝐼 ) ) ) ∧ ( 𝑦 ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝐼 ) ) ) 𝑥 ) = ( 1r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝐼 ) ) ) ) ) ) |
| 41 |
27 40
|
raleqbidva |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ∃ 𝑦 ∈ ( Base ‘ 𝑄 ) ( ( 𝑥 ( .r ‘ ( oppr ‘ 𝑄 ) ) 𝑦 ) = ( 1r ‘ 𝑄 ) ∧ ( 𝑦 ( .r ‘ ( oppr ‘ 𝑄 ) ) 𝑥 ) = ( 1r ‘ 𝑄 ) ) ↔ ∀ 𝑥 ∈ ( ( Base ‘ ( 𝑂 /s ( 𝑂 ~QG 𝐼 ) ) ) ∖ { ( 0g ‘ ( 𝑂 /s ( 𝑂 ~QG 𝐼 ) ) ) } ) ∃ 𝑦 ∈ ( Base ‘ ( 𝑂 /s ( 𝑂 ~QG 𝐼 ) ) ) ( ( 𝑥 ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝐼 ) ) ) 𝑦 ) = ( 1r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝐼 ) ) ) ∧ ( 𝑦 ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝐼 ) ) ) 𝑥 ) = ( 1r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝐼 ) ) ) ) ) ) |
| 42 |
18 41
|
anbi12d |
⊢ ( 𝜑 → ( ( ( 1r ‘ 𝑄 ) ≠ ( 0g ‘ 𝑄 ) ∧ ∀ 𝑥 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ∃ 𝑦 ∈ ( Base ‘ 𝑄 ) ( ( 𝑥 ( .r ‘ ( oppr ‘ 𝑄 ) ) 𝑦 ) = ( 1r ‘ 𝑄 ) ∧ ( 𝑦 ( .r ‘ ( oppr ‘ 𝑄 ) ) 𝑥 ) = ( 1r ‘ 𝑄 ) ) ) ↔ ( ( 1r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝐼 ) ) ) ≠ ( 0g ‘ ( 𝑂 /s ( 𝑂 ~QG 𝐼 ) ) ) ∧ ∀ 𝑥 ∈ ( ( Base ‘ ( 𝑂 /s ( 𝑂 ~QG 𝐼 ) ) ) ∖ { ( 0g ‘ ( 𝑂 /s ( 𝑂 ~QG 𝐼 ) ) ) } ) ∃ 𝑦 ∈ ( Base ‘ ( 𝑂 /s ( 𝑂 ~QG 𝐼 ) ) ) ( ( 𝑥 ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝐼 ) ) ) 𝑦 ) = ( 1r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝐼 ) ) ) ∧ ( 𝑦 ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝐼 ) ) ) 𝑥 ) = ( 1r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝐼 ) ) ) ) ) ) ) |
| 43 |
|
eqid |
⊢ ( .r ‘ ( oppr ‘ 𝑄 ) ) = ( .r ‘ ( oppr ‘ 𝑄 ) ) |
| 44 |
|
eqid |
⊢ ( Unit ‘ 𝑄 ) = ( Unit ‘ 𝑄 ) |
| 45 |
44 6
|
opprunit |
⊢ ( Unit ‘ 𝑄 ) = ( Unit ‘ ( oppr ‘ 𝑄 ) ) |
| 46 |
|
eqid |
⊢ ( 2Ideal ‘ 𝑅 ) = ( 2Ideal ‘ 𝑅 ) |
| 47 |
3 46
|
qusring |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ ( 2Ideal ‘ 𝑅 ) ) → 𝑄 ∈ Ring ) |
| 48 |
4 5 47
|
syl2anc |
⊢ ( 𝜑 → 𝑄 ∈ Ring ) |
| 49 |
6
|
opprring |
⊢ ( 𝑄 ∈ Ring → ( oppr ‘ 𝑄 ) ∈ Ring ) |
| 50 |
48 49
|
syl |
⊢ ( 𝜑 → ( oppr ‘ 𝑄 ) ∈ Ring ) |
| 51 |
20 12 8 43 45 50
|
isdrng4 |
⊢ ( 𝜑 → ( ( oppr ‘ 𝑄 ) ∈ DivRing ↔ ( ( 1r ‘ 𝑄 ) ≠ ( 0g ‘ 𝑄 ) ∧ ∀ 𝑥 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ∃ 𝑦 ∈ ( Base ‘ 𝑄 ) ( ( 𝑥 ( .r ‘ ( oppr ‘ 𝑄 ) ) 𝑦 ) = ( 1r ‘ 𝑄 ) ∧ ( 𝑦 ( .r ‘ ( oppr ‘ 𝑄 ) ) 𝑥 ) = ( 1r ‘ 𝑄 ) ) ) ) ) |
| 52 |
|
eqid |
⊢ ( Base ‘ ( 𝑂 /s ( 𝑂 ~QG 𝐼 ) ) ) = ( Base ‘ ( 𝑂 /s ( 𝑂 ~QG 𝐼 ) ) ) |
| 53 |
|
eqid |
⊢ ( 0g ‘ ( 𝑂 /s ( 𝑂 ~QG 𝐼 ) ) ) = ( 0g ‘ ( 𝑂 /s ( 𝑂 ~QG 𝐼 ) ) ) |
| 54 |
|
eqid |
⊢ ( 1r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝐼 ) ) ) = ( 1r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝐼 ) ) ) |
| 55 |
|
eqid |
⊢ ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝐼 ) ) ) = ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝐼 ) ) ) |
| 56 |
|
eqid |
⊢ ( Unit ‘ ( 𝑂 /s ( 𝑂 ~QG 𝐼 ) ) ) = ( Unit ‘ ( 𝑂 /s ( 𝑂 ~QG 𝐼 ) ) ) |
| 57 |
2
|
opprring |
⊢ ( 𝑅 ∈ Ring → 𝑂 ∈ Ring ) |
| 58 |
4 57
|
syl |
⊢ ( 𝜑 → 𝑂 ∈ Ring ) |
| 59 |
2 4
|
oppr2idl |
⊢ ( 𝜑 → ( 2Ideal ‘ 𝑅 ) = ( 2Ideal ‘ 𝑂 ) ) |
| 60 |
5 59
|
eleqtrd |
⊢ ( 𝜑 → 𝐼 ∈ ( 2Ideal ‘ 𝑂 ) ) |
| 61 |
|
eqid |
⊢ ( 𝑂 /s ( 𝑂 ~QG 𝐼 ) ) = ( 𝑂 /s ( 𝑂 ~QG 𝐼 ) ) |
| 62 |
|
eqid |
⊢ ( 2Ideal ‘ 𝑂 ) = ( 2Ideal ‘ 𝑂 ) |
| 63 |
61 62
|
qusring |
⊢ ( ( 𝑂 ∈ Ring ∧ 𝐼 ∈ ( 2Ideal ‘ 𝑂 ) ) → ( 𝑂 /s ( 𝑂 ~QG 𝐼 ) ) ∈ Ring ) |
| 64 |
58 60 63
|
syl2anc |
⊢ ( 𝜑 → ( 𝑂 /s ( 𝑂 ~QG 𝐼 ) ) ∈ Ring ) |
| 65 |
52 53 54 55 56 64
|
isdrng4 |
⊢ ( 𝜑 → ( ( 𝑂 /s ( 𝑂 ~QG 𝐼 ) ) ∈ DivRing ↔ ( ( 1r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝐼 ) ) ) ≠ ( 0g ‘ ( 𝑂 /s ( 𝑂 ~QG 𝐼 ) ) ) ∧ ∀ 𝑥 ∈ ( ( Base ‘ ( 𝑂 /s ( 𝑂 ~QG 𝐼 ) ) ) ∖ { ( 0g ‘ ( 𝑂 /s ( 𝑂 ~QG 𝐼 ) ) ) } ) ∃ 𝑦 ∈ ( Base ‘ ( 𝑂 /s ( 𝑂 ~QG 𝐼 ) ) ) ( ( 𝑥 ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝐼 ) ) ) 𝑦 ) = ( 1r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝐼 ) ) ) ∧ ( 𝑦 ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝐼 ) ) ) 𝑥 ) = ( 1r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝐼 ) ) ) ) ) ) ) |
| 66 |
42 51 65
|
3bitr4d |
⊢ ( 𝜑 → ( ( oppr ‘ 𝑄 ) ∈ DivRing ↔ ( 𝑂 /s ( 𝑂 ~QG 𝐼 ) ) ∈ DivRing ) ) |