| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isdrng4.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 2 |
|
isdrng4.0 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
| 3 |
|
isdrng4.1 |
⊢ 1 = ( 1r ‘ 𝑅 ) |
| 4 |
|
isdrng4.x |
⊢ · = ( .r ‘ 𝑅 ) |
| 5 |
|
isdrng4.u |
⊢ 𝑈 = ( Unit ‘ 𝑅 ) |
| 6 |
|
isdrng4.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 7 |
1 5 2
|
isdrng |
⊢ ( 𝑅 ∈ DivRing ↔ ( 𝑅 ∈ Ring ∧ 𝑈 = ( 𝐵 ∖ { 0 } ) ) ) |
| 8 |
6
|
biantrurd |
⊢ ( 𝜑 → ( 𝑈 = ( 𝐵 ∖ { 0 } ) ↔ ( 𝑅 ∈ Ring ∧ 𝑈 = ( 𝐵 ∖ { 0 } ) ) ) ) |
| 9 |
7 8
|
bitr4id |
⊢ ( 𝜑 → ( 𝑅 ∈ DivRing ↔ 𝑈 = ( 𝐵 ∖ { 0 } ) ) ) |
| 10 |
5 3
|
1unit |
⊢ ( 𝑅 ∈ Ring → 1 ∈ 𝑈 ) |
| 11 |
6 10
|
syl |
⊢ ( 𝜑 → 1 ∈ 𝑈 ) |
| 12 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑈 = ( 𝐵 ∖ { 0 } ) ) → 1 ∈ 𝑈 ) |
| 13 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑈 = ( 𝐵 ∖ { 0 } ) ) → 𝑈 = ( 𝐵 ∖ { 0 } ) ) |
| 14 |
12 13
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑈 = ( 𝐵 ∖ { 0 } ) ) → 1 ∈ ( 𝐵 ∖ { 0 } ) ) |
| 15 |
|
eldifsni |
⊢ ( 1 ∈ ( 𝐵 ∖ { 0 } ) → 1 ≠ 0 ) |
| 16 |
14 15
|
syl |
⊢ ( ( 𝜑 ∧ 𝑈 = ( 𝐵 ∖ { 0 } ) ) → 1 ≠ 0 ) |
| 17 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑈 = ( 𝐵 ∖ { 0 } ) ) ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) → 𝜑 ) |
| 18 |
13
|
eleq2d |
⊢ ( ( 𝜑 ∧ 𝑈 = ( 𝐵 ∖ { 0 } ) ) → ( 𝑥 ∈ 𝑈 ↔ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) ) |
| 19 |
18
|
biimpar |
⊢ ( ( ( 𝜑 ∧ 𝑈 = ( 𝐵 ∖ { 0 } ) ) ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) → 𝑥 ∈ 𝑈 ) |
| 20 |
6
|
ad5antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑈 ) ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑦 · 𝑥 ) = 1 ) ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑥 · 𝑧 ) = 1 ) → 𝑅 ∈ Ring ) |
| 21 |
1 5
|
unitcl |
⊢ ( 𝑥 ∈ 𝑈 → 𝑥 ∈ 𝐵 ) |
| 22 |
21
|
ad5antlr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑈 ) ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑦 · 𝑥 ) = 1 ) ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑥 · 𝑧 ) = 1 ) → 𝑥 ∈ 𝐵 ) |
| 23 |
|
simp-4r |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑈 ) ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑦 · 𝑥 ) = 1 ) ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑥 · 𝑧 ) = 1 ) → 𝑦 ∈ 𝐵 ) |
| 24 |
|
simplr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑈 ) ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑦 · 𝑥 ) = 1 ) ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑥 · 𝑧 ) = 1 ) → 𝑧 ∈ 𝐵 ) |
| 25 |
|
simpllr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑈 ) ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑦 · 𝑥 ) = 1 ) ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑥 · 𝑧 ) = 1 ) → ( 𝑦 · 𝑥 ) = 1 ) |
| 26 |
|
simpr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑈 ) ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑦 · 𝑥 ) = 1 ) ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑥 · 𝑧 ) = 1 ) → ( 𝑥 · 𝑧 ) = 1 ) |
| 27 |
1 2 3 4 5 20 22 23 24 25 26
|
ringinveu |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑈 ) ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑦 · 𝑥 ) = 1 ) ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑥 · 𝑧 ) = 1 ) → 𝑧 = 𝑦 ) |
| 28 |
27
|
oveq2d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑈 ) ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑦 · 𝑥 ) = 1 ) ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑥 · 𝑧 ) = 1 ) → ( 𝑥 · 𝑧 ) = ( 𝑥 · 𝑦 ) ) |
| 29 |
28 26
|
eqtr3d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑈 ) ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑦 · 𝑥 ) = 1 ) ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑥 · 𝑧 ) = 1 ) → ( 𝑥 · 𝑦 ) = 1 ) |
| 30 |
21
|
ad3antlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑈 ) ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑦 · 𝑥 ) = 1 ) → 𝑥 ∈ 𝐵 ) |
| 31 |
|
eqid |
⊢ ( ∥r ‘ 𝑅 ) = ( ∥r ‘ 𝑅 ) |
| 32 |
|
eqid |
⊢ ( oppr ‘ 𝑅 ) = ( oppr ‘ 𝑅 ) |
| 33 |
|
eqid |
⊢ ( ∥r ‘ ( oppr ‘ 𝑅 ) ) = ( ∥r ‘ ( oppr ‘ 𝑅 ) ) |
| 34 |
5 3 31 32 33
|
isunit |
⊢ ( 𝑥 ∈ 𝑈 ↔ ( 𝑥 ( ∥r ‘ 𝑅 ) 1 ∧ 𝑥 ( ∥r ‘ ( oppr ‘ 𝑅 ) ) 1 ) ) |
| 35 |
34
|
simprbi |
⊢ ( 𝑥 ∈ 𝑈 → 𝑥 ( ∥r ‘ ( oppr ‘ 𝑅 ) ) 1 ) |
| 36 |
35
|
ad3antlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑈 ) ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑦 · 𝑥 ) = 1 ) → 𝑥 ( ∥r ‘ ( oppr ‘ 𝑅 ) ) 1 ) |
| 37 |
32 1
|
opprbas |
⊢ 𝐵 = ( Base ‘ ( oppr ‘ 𝑅 ) ) |
| 38 |
|
eqid |
⊢ ( .r ‘ ( oppr ‘ 𝑅 ) ) = ( .r ‘ ( oppr ‘ 𝑅 ) ) |
| 39 |
37 33 38
|
dvdsr2 |
⊢ ( 𝑥 ∈ 𝐵 → ( 𝑥 ( ∥r ‘ ( oppr ‘ 𝑅 ) ) 1 ↔ ∃ 𝑦 ∈ 𝐵 ( 𝑦 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑥 ) = 1 ) ) |
| 40 |
39
|
biimpa |
⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑥 ( ∥r ‘ ( oppr ‘ 𝑅 ) ) 1 ) → ∃ 𝑦 ∈ 𝐵 ( 𝑦 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑥 ) = 1 ) |
| 41 |
1 4 32 38
|
opprmul |
⊢ ( 𝑦 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑥 ) = ( 𝑥 · 𝑦 ) |
| 42 |
41
|
eqeq1i |
⊢ ( ( 𝑦 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑥 ) = 1 ↔ ( 𝑥 · 𝑦 ) = 1 ) |
| 43 |
42
|
rexbii |
⊢ ( ∃ 𝑦 ∈ 𝐵 ( 𝑦 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑥 ) = 1 ↔ ∃ 𝑦 ∈ 𝐵 ( 𝑥 · 𝑦 ) = 1 ) |
| 44 |
40 43
|
sylib |
⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑥 ( ∥r ‘ ( oppr ‘ 𝑅 ) ) 1 ) → ∃ 𝑦 ∈ 𝐵 ( 𝑥 · 𝑦 ) = 1 ) |
| 45 |
|
oveq2 |
⊢ ( 𝑦 = 𝑧 → ( 𝑥 · 𝑦 ) = ( 𝑥 · 𝑧 ) ) |
| 46 |
45
|
eqeq1d |
⊢ ( 𝑦 = 𝑧 → ( ( 𝑥 · 𝑦 ) = 1 ↔ ( 𝑥 · 𝑧 ) = 1 ) ) |
| 47 |
46
|
cbvrexvw |
⊢ ( ∃ 𝑦 ∈ 𝐵 ( 𝑥 · 𝑦 ) = 1 ↔ ∃ 𝑧 ∈ 𝐵 ( 𝑥 · 𝑧 ) = 1 ) |
| 48 |
44 47
|
sylib |
⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑥 ( ∥r ‘ ( oppr ‘ 𝑅 ) ) 1 ) → ∃ 𝑧 ∈ 𝐵 ( 𝑥 · 𝑧 ) = 1 ) |
| 49 |
30 36 48
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑈 ) ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑦 · 𝑥 ) = 1 ) → ∃ 𝑧 ∈ 𝐵 ( 𝑥 · 𝑧 ) = 1 ) |
| 50 |
29 49
|
r19.29a |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑈 ) ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑦 · 𝑥 ) = 1 ) → ( 𝑥 · 𝑦 ) = 1 ) |
| 51 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑈 ) ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑦 · 𝑥 ) = 1 ) → ( 𝑦 · 𝑥 ) = 1 ) |
| 52 |
50 51
|
jca |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑈 ) ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑦 · 𝑥 ) = 1 ) → ( ( 𝑥 · 𝑦 ) = 1 ∧ ( 𝑦 · 𝑥 ) = 1 ) ) |
| 53 |
52
|
anasss |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑈 ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝑦 · 𝑥 ) = 1 ) ) → ( ( 𝑥 · 𝑦 ) = 1 ∧ ( 𝑦 · 𝑥 ) = 1 ) ) |
| 54 |
21
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑈 ) → 𝑥 ∈ 𝐵 ) |
| 55 |
34
|
simplbi |
⊢ ( 𝑥 ∈ 𝑈 → 𝑥 ( ∥r ‘ 𝑅 ) 1 ) |
| 56 |
55
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑈 ) → 𝑥 ( ∥r ‘ 𝑅 ) 1 ) |
| 57 |
1 31 4
|
dvdsr2 |
⊢ ( 𝑥 ∈ 𝐵 → ( 𝑥 ( ∥r ‘ 𝑅 ) 1 ↔ ∃ 𝑦 ∈ 𝐵 ( 𝑦 · 𝑥 ) = 1 ) ) |
| 58 |
57
|
biimpa |
⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑥 ( ∥r ‘ 𝑅 ) 1 ) → ∃ 𝑦 ∈ 𝐵 ( 𝑦 · 𝑥 ) = 1 ) |
| 59 |
54 56 58
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑈 ) → ∃ 𝑦 ∈ 𝐵 ( 𝑦 · 𝑥 ) = 1 ) |
| 60 |
53 59
|
reximddv |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑈 ) → ∃ 𝑦 ∈ 𝐵 ( ( 𝑥 · 𝑦 ) = 1 ∧ ( 𝑦 · 𝑥 ) = 1 ) ) |
| 61 |
17 19 60
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑈 = ( 𝐵 ∖ { 0 } ) ) ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) → ∃ 𝑦 ∈ 𝐵 ( ( 𝑥 · 𝑦 ) = 1 ∧ ( 𝑦 · 𝑥 ) = 1 ) ) |
| 62 |
61
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑈 = ( 𝐵 ∖ { 0 } ) ) → ∀ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ∃ 𝑦 ∈ 𝐵 ( ( 𝑥 · 𝑦 ) = 1 ∧ ( 𝑦 · 𝑥 ) = 1 ) ) |
| 63 |
16 62
|
jca |
⊢ ( ( 𝜑 ∧ 𝑈 = ( 𝐵 ∖ { 0 } ) ) → ( 1 ≠ 0 ∧ ∀ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ∃ 𝑦 ∈ 𝐵 ( ( 𝑥 · 𝑦 ) = 1 ∧ ( 𝑦 · 𝑥 ) = 1 ) ) ) |
| 64 |
1 5
|
unitss |
⊢ 𝑈 ⊆ 𝐵 |
| 65 |
64
|
a1i |
⊢ ( ( 𝜑 ∧ ( 1 ≠ 0 ∧ ∀ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ∃ 𝑦 ∈ 𝐵 ( ( 𝑥 · 𝑦 ) = 1 ∧ ( 𝑦 · 𝑥 ) = 1 ) ) ) → 𝑈 ⊆ 𝐵 ) |
| 66 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( 1 ≠ 0 ∧ ∀ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ∃ 𝑦 ∈ 𝐵 ( ( 𝑥 · 𝑦 ) = 1 ∧ ( 𝑦 · 𝑥 ) = 1 ) ) ) → 𝑅 ∈ Ring ) |
| 67 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 1 ≠ 0 ∧ ∀ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ∃ 𝑦 ∈ 𝐵 ( ( 𝑥 · 𝑦 ) = 1 ∧ ( 𝑦 · 𝑥 ) = 1 ) ) ) → 1 ≠ 0 ) |
| 68 |
5 2 3
|
0unit |
⊢ ( 𝑅 ∈ Ring → ( 0 ∈ 𝑈 ↔ 1 = 0 ) ) |
| 69 |
68
|
necon3bbid |
⊢ ( 𝑅 ∈ Ring → ( ¬ 0 ∈ 𝑈 ↔ 1 ≠ 0 ) ) |
| 70 |
69
|
biimpar |
⊢ ( ( 𝑅 ∈ Ring ∧ 1 ≠ 0 ) → ¬ 0 ∈ 𝑈 ) |
| 71 |
66 67 70
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 1 ≠ 0 ∧ ∀ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ∃ 𝑦 ∈ 𝐵 ( ( 𝑥 · 𝑦 ) = 1 ∧ ( 𝑦 · 𝑥 ) = 1 ) ) ) → ¬ 0 ∈ 𝑈 ) |
| 72 |
|
ssdifsn |
⊢ ( 𝑈 ⊆ ( 𝐵 ∖ { 0 } ) ↔ ( 𝑈 ⊆ 𝐵 ∧ ¬ 0 ∈ 𝑈 ) ) |
| 73 |
65 71 72
|
sylanbrc |
⊢ ( ( 𝜑 ∧ ( 1 ≠ 0 ∧ ∀ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ∃ 𝑦 ∈ 𝐵 ( ( 𝑥 · 𝑦 ) = 1 ∧ ( 𝑦 · 𝑥 ) = 1 ) ) ) → 𝑈 ⊆ ( 𝐵 ∖ { 0 } ) ) |
| 74 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 1 ≠ 0 ) ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) ∧ ∃ 𝑦 ∈ 𝐵 ( ( 𝑥 · 𝑦 ) = 1 ∧ ( 𝑦 · 𝑥 ) = 1 ) ) → 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) |
| 75 |
74
|
eldifad |
⊢ ( ( ( ( 𝜑 ∧ 1 ≠ 0 ) ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) ∧ ∃ 𝑦 ∈ 𝐵 ( ( 𝑥 · 𝑦 ) = 1 ∧ ( 𝑦 · 𝑥 ) = 1 ) ) → 𝑥 ∈ 𝐵 ) |
| 76 |
|
simpr |
⊢ ( ( ( 𝑥 · 𝑦 ) = 1 ∧ ( 𝑦 · 𝑥 ) = 1 ) → ( 𝑦 · 𝑥 ) = 1 ) |
| 77 |
76
|
reximi |
⊢ ( ∃ 𝑦 ∈ 𝐵 ( ( 𝑥 · 𝑦 ) = 1 ∧ ( 𝑦 · 𝑥 ) = 1 ) → ∃ 𝑦 ∈ 𝐵 ( 𝑦 · 𝑥 ) = 1 ) |
| 78 |
77
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 1 ≠ 0 ) ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) ∧ ∃ 𝑦 ∈ 𝐵 ( ( 𝑥 · 𝑦 ) = 1 ∧ ( 𝑦 · 𝑥 ) = 1 ) ) → ∃ 𝑦 ∈ 𝐵 ( 𝑦 · 𝑥 ) = 1 ) |
| 79 |
57
|
biimpar |
⊢ ( ( 𝑥 ∈ 𝐵 ∧ ∃ 𝑦 ∈ 𝐵 ( 𝑦 · 𝑥 ) = 1 ) → 𝑥 ( ∥r ‘ 𝑅 ) 1 ) |
| 80 |
75 78 79
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 1 ≠ 0 ) ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) ∧ ∃ 𝑦 ∈ 𝐵 ( ( 𝑥 · 𝑦 ) = 1 ∧ ( 𝑦 · 𝑥 ) = 1 ) ) → 𝑥 ( ∥r ‘ 𝑅 ) 1 ) |
| 81 |
|
simpl |
⊢ ( ( ( 𝑥 · 𝑦 ) = 1 ∧ ( 𝑦 · 𝑥 ) = 1 ) → ( 𝑥 · 𝑦 ) = 1 ) |
| 82 |
81
|
reximi |
⊢ ( ∃ 𝑦 ∈ 𝐵 ( ( 𝑥 · 𝑦 ) = 1 ∧ ( 𝑦 · 𝑥 ) = 1 ) → ∃ 𝑦 ∈ 𝐵 ( 𝑥 · 𝑦 ) = 1 ) |
| 83 |
82
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 1 ≠ 0 ) ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) ∧ ∃ 𝑦 ∈ 𝐵 ( ( 𝑥 · 𝑦 ) = 1 ∧ ( 𝑦 · 𝑥 ) = 1 ) ) → ∃ 𝑦 ∈ 𝐵 ( 𝑥 · 𝑦 ) = 1 ) |
| 84 |
83 43
|
sylibr |
⊢ ( ( ( ( 𝜑 ∧ 1 ≠ 0 ) ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) ∧ ∃ 𝑦 ∈ 𝐵 ( ( 𝑥 · 𝑦 ) = 1 ∧ ( 𝑦 · 𝑥 ) = 1 ) ) → ∃ 𝑦 ∈ 𝐵 ( 𝑦 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑥 ) = 1 ) |
| 85 |
39
|
biimpar |
⊢ ( ( 𝑥 ∈ 𝐵 ∧ ∃ 𝑦 ∈ 𝐵 ( 𝑦 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑥 ) = 1 ) → 𝑥 ( ∥r ‘ ( oppr ‘ 𝑅 ) ) 1 ) |
| 86 |
75 84 85
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 1 ≠ 0 ) ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) ∧ ∃ 𝑦 ∈ 𝐵 ( ( 𝑥 · 𝑦 ) = 1 ∧ ( 𝑦 · 𝑥 ) = 1 ) ) → 𝑥 ( ∥r ‘ ( oppr ‘ 𝑅 ) ) 1 ) |
| 87 |
80 86 34
|
sylanbrc |
⊢ ( ( ( ( 𝜑 ∧ 1 ≠ 0 ) ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) ∧ ∃ 𝑦 ∈ 𝐵 ( ( 𝑥 · 𝑦 ) = 1 ∧ ( 𝑦 · 𝑥 ) = 1 ) ) → 𝑥 ∈ 𝑈 ) |
| 88 |
87
|
ex |
⊢ ( ( ( 𝜑 ∧ 1 ≠ 0 ) ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) → ( ∃ 𝑦 ∈ 𝐵 ( ( 𝑥 · 𝑦 ) = 1 ∧ ( 𝑦 · 𝑥 ) = 1 ) → 𝑥 ∈ 𝑈 ) ) |
| 89 |
88
|
ralimdva |
⊢ ( ( 𝜑 ∧ 1 ≠ 0 ) → ( ∀ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ∃ 𝑦 ∈ 𝐵 ( ( 𝑥 · 𝑦 ) = 1 ∧ ( 𝑦 · 𝑥 ) = 1 ) → ∀ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) 𝑥 ∈ 𝑈 ) ) |
| 90 |
89
|
impr |
⊢ ( ( 𝜑 ∧ ( 1 ≠ 0 ∧ ∀ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ∃ 𝑦 ∈ 𝐵 ( ( 𝑥 · 𝑦 ) = 1 ∧ ( 𝑦 · 𝑥 ) = 1 ) ) ) → ∀ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) 𝑥 ∈ 𝑈 ) |
| 91 |
|
dfss3 |
⊢ ( ( 𝐵 ∖ { 0 } ) ⊆ 𝑈 ↔ ∀ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) 𝑥 ∈ 𝑈 ) |
| 92 |
90 91
|
sylibr |
⊢ ( ( 𝜑 ∧ ( 1 ≠ 0 ∧ ∀ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ∃ 𝑦 ∈ 𝐵 ( ( 𝑥 · 𝑦 ) = 1 ∧ ( 𝑦 · 𝑥 ) = 1 ) ) ) → ( 𝐵 ∖ { 0 } ) ⊆ 𝑈 ) |
| 93 |
73 92
|
eqssd |
⊢ ( ( 𝜑 ∧ ( 1 ≠ 0 ∧ ∀ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ∃ 𝑦 ∈ 𝐵 ( ( 𝑥 · 𝑦 ) = 1 ∧ ( 𝑦 · 𝑥 ) = 1 ) ) ) → 𝑈 = ( 𝐵 ∖ { 0 } ) ) |
| 94 |
63 93
|
impbida |
⊢ ( 𝜑 → ( 𝑈 = ( 𝐵 ∖ { 0 } ) ↔ ( 1 ≠ 0 ∧ ∀ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ∃ 𝑦 ∈ 𝐵 ( ( 𝑥 · 𝑦 ) = 1 ∧ ( 𝑦 · 𝑥 ) = 1 ) ) ) ) |
| 95 |
9 94
|
bitrd |
⊢ ( 𝜑 → ( 𝑅 ∈ DivRing ↔ ( 1 ≠ 0 ∧ ∀ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ∃ 𝑦 ∈ 𝐵 ( ( 𝑥 · 𝑦 ) = 1 ∧ ( 𝑦 · 𝑥 ) = 1 ) ) ) ) |