| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isdrng4.b |
|
| 2 |
|
isdrng4.0 |
|
| 3 |
|
isdrng4.1 |
|
| 4 |
|
isdrng4.x |
|
| 5 |
|
isdrng4.u |
|
| 6 |
|
isdrng4.r |
|
| 7 |
1 5 2
|
isdrng |
|
| 8 |
6
|
biantrurd |
|
| 9 |
7 8
|
bitr4id |
|
| 10 |
5 3
|
1unit |
|
| 11 |
6 10
|
syl |
|
| 12 |
11
|
adantr |
|
| 13 |
|
simpr |
|
| 14 |
12 13
|
eleqtrd |
|
| 15 |
|
eldifsni |
|
| 16 |
14 15
|
syl |
|
| 17 |
|
simpll |
|
| 18 |
13
|
eleq2d |
|
| 19 |
18
|
biimpar |
|
| 20 |
6
|
ad5antr |
|
| 21 |
1 5
|
unitcl |
|
| 22 |
21
|
ad5antlr |
|
| 23 |
|
simp-4r |
|
| 24 |
|
simplr |
|
| 25 |
|
simpllr |
|
| 26 |
|
simpr |
|
| 27 |
1 2 3 4 5 20 22 23 24 25 26
|
ringinveu |
|
| 28 |
27
|
oveq2d |
|
| 29 |
28 26
|
eqtr3d |
|
| 30 |
21
|
ad3antlr |
|
| 31 |
|
eqid |
|
| 32 |
|
eqid |
|
| 33 |
|
eqid |
|
| 34 |
5 3 31 32 33
|
isunit |
|
| 35 |
34
|
simprbi |
|
| 36 |
35
|
ad3antlr |
|
| 37 |
32 1
|
opprbas |
|
| 38 |
|
eqid |
|
| 39 |
37 33 38
|
dvdsr2 |
|
| 40 |
39
|
biimpa |
|
| 41 |
1 4 32 38
|
opprmul |
|
| 42 |
41
|
eqeq1i |
|
| 43 |
42
|
rexbii |
|
| 44 |
40 43
|
sylib |
|
| 45 |
|
oveq2 |
|
| 46 |
45
|
eqeq1d |
|
| 47 |
46
|
cbvrexvw |
|
| 48 |
44 47
|
sylib |
|
| 49 |
30 36 48
|
syl2anc |
|
| 50 |
29 49
|
r19.29a |
|
| 51 |
|
simpr |
|
| 52 |
50 51
|
jca |
|
| 53 |
52
|
anasss |
|
| 54 |
21
|
adantl |
|
| 55 |
34
|
simplbi |
|
| 56 |
55
|
adantl |
|
| 57 |
1 31 4
|
dvdsr2 |
|
| 58 |
57
|
biimpa |
|
| 59 |
54 56 58
|
syl2anc |
|
| 60 |
53 59
|
reximddv |
|
| 61 |
17 19 60
|
syl2anc |
|
| 62 |
61
|
ralrimiva |
|
| 63 |
16 62
|
jca |
|
| 64 |
1 5
|
unitss |
|
| 65 |
64
|
a1i |
|
| 66 |
6
|
adantr |
|
| 67 |
|
simprl |
|
| 68 |
5 2 3
|
0unit |
|
| 69 |
68
|
necon3bbid |
|
| 70 |
69
|
biimpar |
|
| 71 |
66 67 70
|
syl2anc |
|
| 72 |
|
ssdifsn |
|
| 73 |
65 71 72
|
sylanbrc |
|
| 74 |
|
simplr |
|
| 75 |
74
|
eldifad |
|
| 76 |
|
simpr |
|
| 77 |
76
|
reximi |
|
| 78 |
77
|
adantl |
|
| 79 |
57
|
biimpar |
|
| 80 |
75 78 79
|
syl2anc |
|
| 81 |
|
simpl |
|
| 82 |
81
|
reximi |
|
| 83 |
82
|
adantl |
|
| 84 |
83 43
|
sylibr |
|
| 85 |
39
|
biimpar |
|
| 86 |
75 84 85
|
syl2anc |
|
| 87 |
80 86 34
|
sylanbrc |
|
| 88 |
87
|
ex |
|
| 89 |
88
|
ralimdva |
|
| 90 |
89
|
impr |
|
| 91 |
|
dfss3 |
|
| 92 |
90 91
|
sylibr |
|
| 93 |
73 92
|
eqssd |
|
| 94 |
63 93
|
impbida |
|
| 95 |
9 94
|
bitrd |
|