Metamath Proof Explorer


Theorem isdrng4

Description: A division ring is a ring in which 1 =/= 0 and every nonzero element has a left and right inverse. (Contributed by Thierry Arnoux, 2-Mar-2025)

Ref Expression
Hypotheses isdrng4.b B=BaseR
isdrng4.0 0˙=0R
isdrng4.1 1˙=1R
isdrng4.x ·˙=R
isdrng4.u U=UnitR
isdrng4.r φRRing
Assertion isdrng4 φRDivRing1˙0˙xB0˙yBx·˙y=1˙y·˙x=1˙

Proof

Step Hyp Ref Expression
1 isdrng4.b B=BaseR
2 isdrng4.0 0˙=0R
3 isdrng4.1 1˙=1R
4 isdrng4.x ·˙=R
5 isdrng4.u U=UnitR
6 isdrng4.r φRRing
7 1 5 2 isdrng RDivRingRRingU=B0˙
8 6 biantrurd φU=B0˙RRingU=B0˙
9 7 8 bitr4id φRDivRingU=B0˙
10 5 3 1unit RRing1˙U
11 6 10 syl φ1˙U
12 11 adantr φU=B0˙1˙U
13 simpr φU=B0˙U=B0˙
14 12 13 eleqtrd φU=B0˙1˙B0˙
15 eldifsni 1˙B0˙1˙0˙
16 14 15 syl φU=B0˙1˙0˙
17 simpll φU=B0˙xB0˙φ
18 13 eleq2d φU=B0˙xUxB0˙
19 18 biimpar φU=B0˙xB0˙xU
20 6 ad5antr φxUyBy·˙x=1˙zBx·˙z=1˙RRing
21 1 5 unitcl xUxB
22 21 ad5antlr φxUyBy·˙x=1˙zBx·˙z=1˙xB
23 simp-4r φxUyBy·˙x=1˙zBx·˙z=1˙yB
24 simplr φxUyBy·˙x=1˙zBx·˙z=1˙zB
25 simpllr φxUyBy·˙x=1˙zBx·˙z=1˙y·˙x=1˙
26 simpr φxUyBy·˙x=1˙zBx·˙z=1˙x·˙z=1˙
27 1 2 3 4 5 20 22 23 24 25 26 ringinveu φxUyBy·˙x=1˙zBx·˙z=1˙z=y
28 27 oveq2d φxUyBy·˙x=1˙zBx·˙z=1˙x·˙z=x·˙y
29 28 26 eqtr3d φxUyBy·˙x=1˙zBx·˙z=1˙x·˙y=1˙
30 21 ad3antlr φxUyBy·˙x=1˙xB
31 eqid rR=rR
32 eqid opprR=opprR
33 eqid ropprR=ropprR
34 5 3 31 32 33 isunit xUxrR1˙xropprR1˙
35 34 simprbi xUxropprR1˙
36 35 ad3antlr φxUyBy·˙x=1˙xropprR1˙
37 32 1 opprbas B=BaseopprR
38 eqid opprR=opprR
39 37 33 38 dvdsr2 xBxropprR1˙yByopprRx=1˙
40 39 biimpa xBxropprR1˙yByopprRx=1˙
41 1 4 32 38 opprmul yopprRx=x·˙y
42 41 eqeq1i yopprRx=1˙x·˙y=1˙
43 42 rexbii yByopprRx=1˙yBx·˙y=1˙
44 40 43 sylib xBxropprR1˙yBx·˙y=1˙
45 oveq2 y=zx·˙y=x·˙z
46 45 eqeq1d y=zx·˙y=1˙x·˙z=1˙
47 46 cbvrexvw yBx·˙y=1˙zBx·˙z=1˙
48 44 47 sylib xBxropprR1˙zBx·˙z=1˙
49 30 36 48 syl2anc φxUyBy·˙x=1˙zBx·˙z=1˙
50 29 49 r19.29a φxUyBy·˙x=1˙x·˙y=1˙
51 simpr φxUyBy·˙x=1˙y·˙x=1˙
52 50 51 jca φxUyBy·˙x=1˙x·˙y=1˙y·˙x=1˙
53 52 anasss φxUyBy·˙x=1˙x·˙y=1˙y·˙x=1˙
54 21 adantl φxUxB
55 34 simplbi xUxrR1˙
56 55 adantl φxUxrR1˙
57 1 31 4 dvdsr2 xBxrR1˙yBy·˙x=1˙
58 57 biimpa xBxrR1˙yBy·˙x=1˙
59 54 56 58 syl2anc φxUyBy·˙x=1˙
60 53 59 reximddv φxUyBx·˙y=1˙y·˙x=1˙
61 17 19 60 syl2anc φU=B0˙xB0˙yBx·˙y=1˙y·˙x=1˙
62 61 ralrimiva φU=B0˙xB0˙yBx·˙y=1˙y·˙x=1˙
63 16 62 jca φU=B0˙1˙0˙xB0˙yBx·˙y=1˙y·˙x=1˙
64 1 5 unitss UB
65 64 a1i φ1˙0˙xB0˙yBx·˙y=1˙y·˙x=1˙UB
66 6 adantr φ1˙0˙xB0˙yBx·˙y=1˙y·˙x=1˙RRing
67 simprl φ1˙0˙xB0˙yBx·˙y=1˙y·˙x=1˙1˙0˙
68 5 2 3 0unit RRing0˙U1˙=0˙
69 68 necon3bbid RRing¬0˙U1˙0˙
70 69 biimpar RRing1˙0˙¬0˙U
71 66 67 70 syl2anc φ1˙0˙xB0˙yBx·˙y=1˙y·˙x=1˙¬0˙U
72 ssdifsn UB0˙UB¬0˙U
73 65 71 72 sylanbrc φ1˙0˙xB0˙yBx·˙y=1˙y·˙x=1˙UB0˙
74 simplr φ1˙0˙xB0˙yBx·˙y=1˙y·˙x=1˙xB0˙
75 74 eldifad φ1˙0˙xB0˙yBx·˙y=1˙y·˙x=1˙xB
76 simpr x·˙y=1˙y·˙x=1˙y·˙x=1˙
77 76 reximi yBx·˙y=1˙y·˙x=1˙yBy·˙x=1˙
78 77 adantl φ1˙0˙xB0˙yBx·˙y=1˙y·˙x=1˙yBy·˙x=1˙
79 57 biimpar xByBy·˙x=1˙xrR1˙
80 75 78 79 syl2anc φ1˙0˙xB0˙yBx·˙y=1˙y·˙x=1˙xrR1˙
81 simpl x·˙y=1˙y·˙x=1˙x·˙y=1˙
82 81 reximi yBx·˙y=1˙y·˙x=1˙yBx·˙y=1˙
83 82 adantl φ1˙0˙xB0˙yBx·˙y=1˙y·˙x=1˙yBx·˙y=1˙
84 83 43 sylibr φ1˙0˙xB0˙yBx·˙y=1˙y·˙x=1˙yByopprRx=1˙
85 39 biimpar xByByopprRx=1˙xropprR1˙
86 75 84 85 syl2anc φ1˙0˙xB0˙yBx·˙y=1˙y·˙x=1˙xropprR1˙
87 80 86 34 sylanbrc φ1˙0˙xB0˙yBx·˙y=1˙y·˙x=1˙xU
88 87 ex φ1˙0˙xB0˙yBx·˙y=1˙y·˙x=1˙xU
89 88 ralimdva φ1˙0˙xB0˙yBx·˙y=1˙y·˙x=1˙xB0˙xU
90 89 impr φ1˙0˙xB0˙yBx·˙y=1˙y·˙x=1˙xB0˙xU
91 dfss3 B0˙UxB0˙xU
92 90 91 sylibr φ1˙0˙xB0˙yBx·˙y=1˙y·˙x=1˙B0˙U
93 73 92 eqssd φ1˙0˙xB0˙yBx·˙y=1˙y·˙x=1˙U=B0˙
94 63 93 impbida φU=B0˙1˙0˙xB0˙yBx·˙y=1˙y·˙x=1˙
95 9 94 bitrd φRDivRing1˙0˙xB0˙yBx·˙y=1˙y·˙x=1˙