Description: If a ring unit element X admits both a left inverse Y and a right inverse Z , they are equal. (Contributed by Thierry Arnoux, 9-Mar-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | isdrng4.b | |
|
isdrng4.0 | |
||
isdrng4.1 | |
||
isdrng4.x | |
||
isdrng4.u | |
||
isdrng4.r | |
||
ringinveu.1 | |
||
ringinveu.2 | |
||
ringinveu.3 | |
||
ringinveu.4 | |
||
ringinveu.5 | |
||
Assertion | ringinveu | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isdrng4.b | |
|
2 | isdrng4.0 | |
|
3 | isdrng4.1 | |
|
4 | isdrng4.x | |
|
5 | isdrng4.u | |
|
6 | isdrng4.r | |
|
7 | ringinveu.1 | |
|
8 | ringinveu.2 | |
|
9 | ringinveu.3 | |
|
10 | ringinveu.4 | |
|
11 | ringinveu.5 | |
|
12 | 11 | oveq2d | |
13 | 10 | oveq1d | |
14 | 1 4 6 8 7 9 | ringassd | |
15 | 1 4 3 6 9 | ringlidmd | |
16 | 13 14 15 | 3eqtr3d | |
17 | 1 4 3 6 8 | ringridmd | |
18 | 12 16 17 | 3eqtr3d | |