Metamath Proof Explorer


Theorem ringinveu

Description: If a ring unit element X admits both a left inverse Y and a right inverse Z , they are equal. (Contributed by Thierry Arnoux, 9-Mar-2025)

Ref Expression
Hypotheses isdrng4.b B=BaseR
isdrng4.0 0˙=0R
isdrng4.1 1˙=1R
isdrng4.x ·˙=R
isdrng4.u U=UnitR
isdrng4.r φRRing
ringinveu.1 φXB
ringinveu.2 φYB
ringinveu.3 φZB
ringinveu.4 φY·˙X=1˙
ringinveu.5 φX·˙Z=1˙
Assertion ringinveu φZ=Y

Proof

Step Hyp Ref Expression
1 isdrng4.b B=BaseR
2 isdrng4.0 0˙=0R
3 isdrng4.1 1˙=1R
4 isdrng4.x ·˙=R
5 isdrng4.u U=UnitR
6 isdrng4.r φRRing
7 ringinveu.1 φXB
8 ringinveu.2 φYB
9 ringinveu.3 φZB
10 ringinveu.4 φY·˙X=1˙
11 ringinveu.5 φX·˙Z=1˙
12 11 oveq2d φY·˙X·˙Z=Y·˙1˙
13 10 oveq1d φY·˙X·˙Z=1˙·˙Z
14 1 4 6 8 7 9 ringassd φY·˙X·˙Z=Y·˙X·˙Z
15 1 4 3 6 9 ringlidmd φ1˙·˙Z=Z
16 13 14 15 3eqtr3d φY·˙X·˙Z=Z
17 1 4 3 6 8 ringridmd φY·˙1˙=Y
18 12 16 17 3eqtr3d φZ=Y